

101 UX Principles

A Definitive Design Guide

Will Grant

BIRMINGHAM - MUMBAI

101 UX Principles

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either
express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book
by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Acquisition Editors: Dominic Shakeshaft, Suresh Jain
Project Editor: Radhika Atitkar
Technical Editor: Nidhisha Shetty
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Sandip Tadge
Production Coordinator: Sandip Tadge

First published: August 2018

Production reference: 1310818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78883-736-1
www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to
over 5,000 books and videos, as well as industry leading tools
to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
zz Spend less time learning and more time coding

with practical eBooks and Videos from over
4,000 industry professionals

zz Learn better with Skill Plans built especially for
you

zz Get a free eBook or video every month
zz Mapt is fully searchable
zz Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every
book published, with PDF and ePub files available? You can
upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of
free technical articles, sign up for a range of free newsletters,
and receive exclusive discounts and offers on Packt books
and eBooks.

http://mapt.io
http://www.PacktPub.com
http://www.PacktPub.com

Contributors

About the author
Will Grant is a British UI/UX expert and a digital product
designer. He is a web technology entrepreneur with over
20 years' experience, leading teams (and products) at the
intersection of technology and usability. After his Computer
Science degree, Will trained with Jakob Nielsen and Bruce
Tognazzini at the Nielsen Norman Group – the world leaders
in usable design. Since then, Will has overseen the user
experience and interaction design of several large-scale web
sites and apps, reaching over a billion users in the process.
Will is a "design purist" and obsessed with building beautiful,
compelling, and familiar products that customers intuitively
know how to use.

With thanks to Noah and Claire

About the reviewers

Billy Hollis is a designer, developer, consultant, trainer,
author, speaker, and contrarian. He leads a team of world-
class XAML devs at http://nextver.com. Billy has
been developing software for over thirty years and has
acquired a worldwide reputation in software development
and architecture. As a developer and consultant, he has
developed systems for healthcare, energy, telecommunications,
and human resources. As an author, Billy has written or
co-written ten technology books and dozens of magazine
articles. As a conference speaker, he has spoken to thousands
of software developers at major industry events, including
TechEd, DevConnections, and VSLive.

Daniel Thompson is a veteran software developer and
seasoned expert in delivering digital products. With over 20
years' experience in the systems design, architecture, stability,
and scaling of both business and consumer software, Daniel
has a proven track record of delivering powerful, rock solid
products for global corporations.

In his work with start-ups, Daniel has helped countless teams
take their initial idea through to a minimum viable product
that solves customer needs and is ready to scale. He is also
the founder of D4 Software—the makers of Prodlytic,
SQLizer, and QueryTree.

http://nextver.com

Kate Shaw is a freelancer and the Head of product design.
She is a communicator, creator, problem solver, travel
maven, freelance thinker, Wannabe revolutionary, and a mum,
with fifteen years' experience of creating delightful digital
experiences. Kate is articulate and professional with a passion
for a user-centric design.

Balancing commercial and people's needs, Kate designs
people-intuitive experiences for start-ups, FTSE 100
companies, and agencies. Her clients have included BBC, The
Telegraph, The Guardian, John Lewis, Marks & Spencers,
Hotels.com, Digitas, Ogilvy, and Yoti.

Packt is Searching for Authors Like You
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have
worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global
tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for,
or submit your own idea.

http://authors.packtpub.com

TABLE OF CONTENTS

Page ii

Table of Contents

Preface� ix
Chapter 1: Anyone Can Be a User Experience (UX)
Professional� 1
Chapter 2: Don't Use More Than Two Typefaces� 5
Chapter 3: Users Already Have Fonts on Their
Computers, So Use Them� 7
Chapter 4: Use Type Size to Depict Information
Hierarchy� 11
Chapter 5: Use a Sensible Default Size for Body Copy� 15
Chapter 6: Use an Ellipsis to Indicate That There's
a Further Step� 17
Chapter 7: Make Your Buttons Look Like Buttons� 21
Chapter 8: Make Buttons a Sensible Size and Group
Them Together by Function� 25
Chapter 9: Make the Whole Button Clickable, Not Just
the Text� 29
Chapter 10: Don't Invent New, Arbitrary Controls� 31
Chapter 11: Search Should be a Text Field with a Button
Labeled "Search"� 35
Chapter 12: Sliders Should Be Used Only for
Non-Quantifiable Values� 39
Chapter 13: Use Numeric Entry Fields for Precise
Integers� 43
Chapter 14: Don't Use a Drop-Down Menu If You Only
Have a Few Options� 45
Chapter 15: Allow Users to Undo Destructive Actions� 49
Chapter 16: Think About What's Just off the Screen� 53
Chapter 17: Use "Infinite Scroll" for Feed–Style Content
Only� 57

Page iii

Table of Contents

Chapter 18: If Your Content Has a Beginning, Middle,
and End, Use Pagination� 61
Chapter 19: If You Must Use Infinite Scroll, Store the
User's Position and Return to It� 65
Chapter 20: Make "Blank Slates" More Than Just
Empty Views� 67
Chapter 21: Make "Getting Started" Tips Easily
Dismissable� 71
Chapter 22: When a User Refreshes a Feed, Move
Them to the Last Unread Item� 75
Chapter 23: Don't Hide Items Away in a "Hamburger"
Menu� 79
Chapter 24: Make Your Links Look Like Links� 83
Chapter 25: Split Menu Items Down into Subsections,
so Users Don't Have to Remember Large Lists� 87
Chapter 26: Hide "Advanced" Settings From Most
Users� 91
Chapter 27: Repeat Menu Items in the Footer or Lower
Down in the View� 95
Chapter 28: Use Consistent Icons Across the Product� 99
Chapter 29: Don't Use Obsolete Icons� 101
Chapter 30: Don't Try to Depict a New Idea With
an Existing Icon� 105
Chapter 31: Never Use Text on Icons� 109
Chapter 32: Always Give Icons a Text Label� 113
Chapter 33: Emoji are the Most Recognized Icon Set
on Earth� 117
Chapter 34: Use Device-Native Input Features Where
Possible� 121

Page iv

Table of Contents

Chapter 35: Obfuscate Passwords in Fields, but Provide
a "Show Password" Toggle� 125
Chapter 36: Always Allow the User to Paste into
Password Fields� 129
Chapter 37: Don't Attempt to Validate Email
Addresses� 133
Chapter 38: Don't Ever Clear User-Entered Data Unless
Specifically Asked To� 137
Chapter 39: Pick a Sensible Size for Multiline Input
Fields� 139
Chapter 40: Don't Ever Make Your UI Move While
a User is Trying to Use It� 143
Chapter 41: Use the Same Date Picker Controls
Consistently� 147
Chapter 42: Pre-fill the Username in "Forgot Password"
Fields� 151
Chapter 43: Be Case-Insensitive� 155
Chapter 44: If a Good Form Experience Can
Be Delivered, Your Users will Love Your Product� 159
Chapter 45: Validate Data Entry as Soon as Possible� 165
Chapter 46: If the Form Fails Validation, Show the
User Which Field Needs Their Attention� 169
Chapter 47: Be Forgiving – Users Don't Know
(and Don't Care) How You Need the Data� 173
Chapter 48: Pick the Right Control for the Job� 177
Chapter 49: Allow Users to Enter Phone Numbers
However They Wish� 181
Chapter 50: Use Drop Downs Sensibly for Date Entry� 185
Chapter 51: Capture the Bare Minimum When
Requesting Payment Card Details� 189

Page v

Table of Contents

Chapter 52: Make it Easy for Users to Enter Postal
or ZIP Codes� 193
Chapter 53: Don't Add Decimal Places to Currency
Input� 197
Chapter 54: Make it Painless for the User to Add
Images� 199
Chapter 55: Use a "Linear" Progress Bar if a Task
will Take a Determinate Amount of Time� 203
Chapter 56: Show a "Spinner" if the Task Will
Take an Indeterminate Amount of Time� 207
Chapter 57: Never Show an Animated, Looping
Progress Bar� 211
Chapter 58: Show a Numeric Progress Indicator
on the Progress Bar� 213
Chapter 59: Contrast Ratios Are Your Friends� 217
Chapter 60: If You Must Use "Flat Design" then
Add Some Visual Affordances to Controls� 221
Chapter 61: Avoid Ambiguous Symbols� 227
Chapter 62: Make Links Make Sense Out of Context� 231
Chapter 63: Add "Skip to Content" Links Above the
Header and Navigation� 235
Chapter 64: Don't Only Use Color to Convey
Information� 239
Chapter 65: If You Turn Off Device Zoom with
a Meta Tag, You're Evil� 243
Chapter 66: Give Navigation Elements a Logical Tab
Order� 247
Chapter 67: Write Clear Labels for Controls� 251
Chapter 68: Let Users Turn off Specific Notifications� 255

Page vi

Table of Contents

Chapter 69: Make Tappable Areas Finger-Sized� 259
Chapter 70: A User's Journey Should Have a Beginning,
Middle, and End� 263
Chapter 71: The User Should Always Know at What
Stage They Are in Any Given Journey� 267
Chapter 72: Use Breadcrumb Navigation� 271
Chapter 73: If the User is on an Optional Journey,
Give Them a Control to "Skip This"� 275
Chapter 74: Users Don't Care About Your Company� 279
Chapter 75: Follow the Standard E-Commerce Pattern� 283
Chapter 76: Show an Indicator in the Title Bar if the
User's Work is Unsaved� 287
Chapter 77: Don't Nag Your Users into Rating
Your App� 289
Chapter 78: Don't Use a Vanity Splash Screen� 293
Chapter 79: Make Your Favicon Distinctive� 295
Chapter 80: Add a "Create from Existing" Flow� 299
Chapter 81: Make it Easy for Users to Pay You� 303
Chapter 82: Categorize Search Results into Sections� 307
Chapter 83: Your Users Probably Don't Understand
the File System� 311
Chapter 84: Show, Don't Tell� 315
Chapter 85: Be Consistent with Terminology� 319
Chapter 86: Use "Sign in" and "Sign out", Not "Log in"
and "Log out"� 321
Chapter 87: "Sign up" Makes More Sense Than
"Register"� 323
Chapter 88: Use "Forgot Password" or "Forgotten Your
Password", Not Something Obscure� 325

Page vii

Table of Contents

Chapter 89: Write Like a Human Being� 329
Chapter 90: Choose Active Verbs over Passive� 333
Chapter 91: Search Results Pages Should Show
the Most Relevant Result at the Top of the Page� 337
Chapter 92: Pick Good Defaults� 341
Chapter 93: Don't Confound Users' Expectations� 345
Chapter 94: Reduce the Number of Tasks
a User Has to Complete by Using Sensible Defaults� 349
Chapter 95: Build Upon Established Metaphors –
It's Not Stealing� 353
Chapter 96: Decide Whether an Interaction Should
Be Obvious, Easy, or Possible� 357
Chapter 97: "Does it Work on Mobile?" is Obsolete� 361
Chapter 98: Messaging is a Solved Problem� 365
Chapter 99: Brands Are Bullshit� 369
Chapter 100: Don't Join the Dark Side� 373
Chapter 101: Test with Real Users� 379
Bonus – Strive for Simplicity� 383
Other Books You May Enjoy� 385
Index� 391

PREFACE

Page x

Preface

These 101 principles are a broad set of guidelines
for designing digital products. There are no doubt
thousands more, but these are the core principles that
will make most products more usable and effective.
They'll save you time and make users happier.

Somewhere along the journey of the web maturing,
we forgot something important: user experience is
not art. It's the opposite of art. UX design should
perform a function: serving users. It has to still look
great, but not at the expense of actually working. Poor
design has crept in over the years and some digital
products have become worse in 100 tiny ways.

So how did we get here? Branding agencies got
involved. They insisted that because as a company
we always refer to photos as "memories," the photo
menu should be called memories too. Nobody knows
what it means or how to find their photos.

The CEO personally picked the shade of sea breeze
that the company uses for its headings everywhere,
so all the headings are pale blue. This means nobody
can read them against a white background on their
mobile phone screen.

The marketing department decided that a full-
screen pop-up collecting users' email addresses would
be good for the Quarter 4 CRM metrics. Then they
said, "Oh, don't make the close icon too big because
we don't want customers to actually close it."

Page xi

Preface

In these three simple examples, found all over the
web, the company lost sight of the user's needs and
forgot to put the user first. Over the past 20 years,
I've learned a lot about designing digital products.
It's hard to pick all these individual lessons out
because it feels like they've been compiled into a big
UX operating system in my brain.

I'm not ashamed to admit that I'm a design
purist. Of course, I value aesthetics, but I see them
as a "hygiene factor" and a necessity. Beyond the
veneer of aesthetics, I've always strived to produce
software that's usable and powerful, where the features
are instantly obvious or easy to discover and learn.

This book is a "shortcut to success" for less
experienced designers and a challenge to some
accepted thinking for seasoned UX professionals.

The principles are structured into broad sections
such as typography, controls, journeys, consistency,
and the wider field of UX practice. Feel free to dip
in and out and use the book as a reference, although
it has been designed to be read through in order,
if you wish.

You might find yourself disagreeing with some
of the principles—that's fine because this is, after
all, an opinionated book—but the disagreement will
sometimes be a prompt to examine your accepted
thinking and re-evaluate if there might be a better
way to accomplish your users' goals.

Page xii

Preface

I hope you enjoy the book and that it helps you
to become a better UX professional, so that you can
implement experiences that work, avoid common
pitfalls, and grow your confidence to fight for the
user.

Will Grant, August 2018

#01
ANYONE CAN BE
A USER EXPERIENCE
(UX) PROFESSIONAL

Page 2

Chapter 1: Anyone Can Be a User Experience (UX) Professional

This guide is for anyone who designs software
products as part of their work. You may be
a full-time designer, a UX professional or someone
who has to make decisions about UX in your
organization's products. Regardless of your role, the
principles in this guide will improve your products,
help you to serve your users' needs better, and make
your customers more likely to return to you.

Although various examples throughout this
book feature a mobile app, website, web app, or
some desktop software, the principles are applicable
to a wide range of applications, from in-car UI,
mobile games, and cockpit controls, to washing
machine interfaces and everything in between.

Empathy and objectivity are the primary skills
you must possess to be good at UX. This is not
to undermine those who have spent many years
studying and working in the UX field—their insights
and experience are valuable—rather to say that study
and practice alone are not enough.

You need empathy to understand your users'
needs, goals and frustrations. You need objectivity
to look at your product with fresh eyes, spot the flaws
and fix them. You can learn everything else.

Page 3

Chapter 1: Anyone Can Be a User Experience (UX) Professional

Learning points
zz UX isn't a talent you're born with—you can learn

how to be good in this field
zz Objectivity and empathy are the two key

personality traits you need to display
zz This book aims to provide a shortcut to success

with 101 tried-and-tested principles

#02
DON'T USE
MORE THAN
TWO TYPEFACES

Page 6

Chapter 2: Don’t Use More Than Two Typefaces

Only amateurs call typefaces "fonts", you know?
"Proper" design professionals call them "typefaces."
Fonts are the files on the device that the software
uses to render the typeface. Fonts are the paint on the
palette, while the typeface is the masterpiece on the
canvas.

Regardless, too often designers add too many
typefaces to their products. You should aim to use
two typefaces maximum: one for headings and titles,
and another for body copy that is intended to be read.

Use weights and italics within that font family for
emphasis—rather than switching to another family.
Typically, this means using your corporate brand font
as the heading, while leaving the controls, dialogs
and in-app copy (which need to be clearly legible)
in a more proven, readable typeface.

Using too many typefaces creates too much visual
"noise" and increases the effort that the user has
to put into understanding the view in front of them.
What's more, many custom-designed brand typefaces
are often made with punchy visual impact in mind,
not readability.

Learning points
zz Use two typefaces maximum
zz Use one typeface for headings and titles
zz Use another typeface for body copy

#03
USERS ALREADY
HAVE FONTS ON
THEIR COMPUTERS,
SO USE THEM

Page 8

Chapter 3: Users Already Have Fonts on Their Computers, So Use Them

Yes, your corporate brand font is lovely. It's so playful
and charming but it takes an extra three seconds
to load the page, as the font needs to be downloaded
from the server and rendered—and nothing appears
until it loads—driving your users crazy.

Including custom display fonts for headings and
titles is fine; it helps to brand the product and adds
some visual interest. However, using custom fonts for
body copy is generally a bad idea.

First of all, these fonts have to be loaded from
somewhere, whether it's Google Fonts, Typekit or
your own CDN. This means that there is an overhead
in getting the font files down to the user's machine.
Content-heavy pages will often break while the correct
fonts are downloaded and rendered—the dreaded
Flash of unstyled content or Flash of unstyled
text (FOUC) (https://en.wikipedia.org/wiki/Flash_of_
unstyled_content).

Secondly, if, by specifying wild and wonderful
body copy typefaces, you think you're exerting
some control over the end result, then think again:
responsive design and 1,000s of different devices out
in the wild mean your pages will look a little different
for everyone.

Luckily, whether your user is on a phone
or a desktop, Windows or Mac (or Linux), they have
some beautiful, highly-readable fonts already installed
and waiting to be used. The "system font stack"
is a CSS rule that tells modern browsers to render
type in the system-native typeface.

https://en.wikipedia.org/wiki/Flash_of_unstyled_content

Page 9

Chapter 3: Users Already Have Fonts on Their Computers, So Use Them

In most cases, using system-native fonts makes
pages appear more quickly, and the type look sharper
and more readable.

Font-family:
apple-system
BlinkMacSystemFont
Segoe UI
Roboto
Oxygen-Sans
Ubuntu
Cantarell
Helvetica Neue
sans-serif

Please, just use the system font stack.

Learning points
zz Use the system-native fonts that your users already

have installed
zz System fonts will typically render better than

custom ones
zz Using native fonts speeds up page load time

#04
USE TYPE SIZE TO
DEPICT INFORMATION
HIERARCHY

Page 12

Chapter 4: Use Type Size to Depict Information Hierarchy

This is a simple, but effective, method for organizing
your views and making them instantly understandable
for a wide range of users. Let's look at an example
of how not to do this in an imagined "Calendar" app
user interface:

Simply by altering the type size by a noticeable
factor, we can show the user the most relevant
information first:

Scale up the information that you want users to
see first, or that you think they'll find most useful,
and they can read on further for extra detail. This is
the reason for a lot of news and factual journalism
settling on this format:

Page 13

Chapter 4: Use Type Size to Depict Information Hierarchy

Headline that tells you something
Subtitle that adds context and poses more questions

This is body copy that expands on the story by adding
detail progressively through the copy. Keep reading to the
end to learn less and less important detail.

The exact same technique can be employed in
user interface design to great effect.

Design blog 'A List Apart' uses typographic hierarchy
to excellent effect on its article list

Page 14

Chapter 4: Use Type Size to Depict Information Hierarchy

Pro-tip: Find a balance and don't overdo it. If too many
elements on the page are large, then they lose any sense
of hierarchy and emphasis.

Learning points
zz Type size indicates the importance of information

to users
zz Use at least two, but no more than three, type

sizes
zz Think about which bits of information are most

important to your users

#05
USE A SENSIBLE
DEFAULT SIZE
FOR BODY COPY

Page 16

Chapter 5: Use a Sensible Default Size for Body Copy

Your customers will be reading a lot of text across
your app or site, so how big should the type be?

The days of fixed-size type are long gone. Most
browsers on desktop and mobile will let users scale
type up and down, switch into "reading mode" and
apply system-wide accessibility settings, like large type
and high-contrast colors.

With that in mind, all you're doing here is setting
the default type size that appears when the product
is first opened. Ideally, the type should be big enough
to be readable, but not so big as to overwhelm the
user or take up too much space in a crowded view.

Body copy in 16px, with a 1.5 line height and
"auto" or "default" character spacing, is usually a safe
bet and a good default for the vast majority of your
users.

Trying to set your own character spacing is usually
unnecessary for body copy, because the browser will
do a better job of text rendering than you can.

Learning points
zz Body copy in 16px, with a 1.5 line height and

"auto" or "default" character spacing, is the "gold
standard" for readable text

zz Allow users to scale your type up and down for
their device

zz Don't ever disable device-scaling features

#06
USE AN ELLIPSIS
TO INDICATE THAT
THERE'S A FURTHER STEP

Page 18

Chapter 6: Use an Ellipsis to Indicate That There’s a Further Step

If your user sees a "Remove" button, how do they
know if pressing it will:

zz Remove the "thing" they're looking at?
zz Ask which "thing" needs to be removed?
zz Ask them if they really want to remove the

"thing"?
zz Instantly remove all their stuff ?

Label the button "Remove…" and the user will have
a good idea that there's another step before all their
stuff is removed. Most users will infer from this that
the button is the first part of a multi-part process and
there will be a second step to confirm or cancel the
action. If a control requires an extra step to perform
its action, include an ellipsis (...) in the control:

New Tab just opens a new tab, while Email Link…
will ask for more information in the next step

Page 19

Chapter 6: Use an Ellipsis to Indicate That There’s a Further Step

These little dots are a great example of invisible
design: most users will never have even noticed
them, but they impart a subtle message as a user's
experience builds over time. They don't get in the
way and they "just work."

Learning points
zz If the user needs to perform an additional action,

show an ellipsis
zz An ellipsis can give the user more confidence that

there's a further step to confirm an action
zz Users may well have unconsciously learned what

these dots mean in a User Interface (UI)

#07
MAKE YOUR BUTTONS
LOOK LIKE BUTTONS

Page 22

Chapter 7: Make Your Buttons Look Like Buttons

The flat design aesthetic, born out of Microsoft's
Metro user interface, rose to near ubiquity in the late
2000s. In iOS 7 and Android's material design, these
extremely minimal visuals are still the go-to look for
modern web applications.

Flat design is bad. It's really terrible for usability.
It's style over substance and it forces your users to
think more about every interaction they make with
your product. Stop making it hard for your customers
to find the buttons:

The Metro user interface in all its "what is clickable?" splendor

Page 23

Chapter 7: Make Your Buttons Look Like Buttons

There are parts of your UI that can be interacted
with, but your user neither knows which parts these
are, nor wants to spend time learning this. They have
used buttons in real life, many times—on elevator
controls, on their oven, and in their car—so they
understand how a button works:

Buttons that exhibit visual affordances such as texture and pseudo-3D shadows (left)
consistently perform better in user tests than those without them (right)

By drawing on real-world examples, we can make
UI buttons that are obvious and instantly familiar.
The human visual system is tuned to see depth, and
by removing the illusion of depth from your UI, you
remove a whole layer of information for the user.

Buttons in real life look pushable: they're raised
or they suggest an obvious way that they might move
if pushed. For example, they might have an indicator
light and look more prominent when enabled. You
should copy these features into your UI.

The inverse is also true: there are real-world
buttons that don't look pushable—flat capacitive
buttons on car park machines and coffee machines
spring to mind—and these buttons are often
accompanied by a stuck-on, handwritten press here for
ticket note.

Page 24

Chapter 7: Make Your Buttons Look Like Buttons

Using real-life inspiration to create affordances,
a new user can identify the controls right away. Create
the visual cues your user needs to know instantly
that they're looking at a button that can be tapped
or clicked:

Bringing flat design to the real world has consequences

Lastly, the opposite is also true: don't make
non-button elements look like buttons if they're not.

Learning points
zz Make buttons look like buttons
zz Don't make non-buttons look like buttons
zz Borrow ideas from real-world experiences in

your UI

#08
MAKE BUTTONS
A SENSIBLE SIZE
AND GROUP THEM
TOGETHER BY FUNCTION

Page 26

Chapter 8: Make Buttons a Sensible Size and Group Them Together by Function

The US psychologist Paul Fitts wrote a paper in
1954 called The information capacity of the
human motor system in controlling the

amplitude of movement (https://www.ncbi.nlm.
nih.gov/pubmed/13174710) which was published
in the Journal of Experimental Psychology. Fitts' work
would go on to be one of the most well-studied
models of human motion.

To dumb Fitts' Law down for us UX people,
rather than psychologists, the core concept that
applies to us is:

"The time required to rapidly move to
a target area is a function of the ratio
between the distance to the target and
the size of the target."

If you're building a user interface, it's really
simple to do this: make buttons big enough, and
close enough, that users can efficiently find them and
move between them:

Which is easier to use and less error-prone?

https://www.ncbi.nlm.nih.gov/pubmed/13174710
https://www.ncbi.nlm.nih.gov/pubmed/13174710
https://www.ncbi.nlm.nih.gov/pubmed/13174710

Page 27

Chapter 8: Make Buttons a Sensible Size and Group Them Together by Function

A great anti-pattern example is those tiny "x"
buttons to close pop-up ads: it's almost as if the
advertisers don't want you to close them…

Learning points
zz Make buttons big enough that they can be tapped

or clicked easily
zz Place buttons close enough to be reachable
zz Don't cause "misclicks" by placing buttons too

close together

#09
MAKE THE WHOLE
BUTTON CLICKABLE,
NOT JUST THE TEXT

Page 30

Chapter 9: Make the Whole Button Clickable, Not Just the Text

Maybe this is simply a pet hate of mine, but I see
it often enough to mention it here. Buttons often
feature text and sometimes developers only make the
text clickable, not the whole button. Meaning that,
if you're a couple of pixels out and miss the text
(but hit the button)... nothing happens.

We're all familiar with thinking, "Did I not click
that?" and often this is the cause. If you're imitating
the real-world behavior of a button, then make
it behave like a real button. This includes giving
the user some feedback that the button has been
successfully clicked (or tapped). This could be with
a change of shade, a slight 1-pixel-movement "down"
or a subtle audio effect.

You get bonus points for showing the "hand
pointer" to desktop users. Sloppy programming
means that some web apps don't show this and
it's unforgivable.

Learning points
zz Your button should look and behave like

a button—clicking anywhere on the button should
activate it

zz Make the pointer turn into a hand when you
hover over the button on desktop

zz Give the user some visual feedback that the
button has been clicked

#10
DON'T INVENT
NEW, ARBITRARY
CONTROLS

Page 32

Chapter 10: Don’t Invent New, Arbitrary Controls

This could be:

zz An isometric pseudo-3D wheel to choose the
color of your car

zz A volume dial that you must click and drag
up-and-down to "rotate"

zz A button you must click and hold for a few
seconds to indicate that you really want to do
this action

Just don't invent them. As designers, we already have
a rich palette of existing controls to choose from. If
you're thinking about making a new UI control, please
stop and think about how hard it will be for users
to learn yet another interface pattern. I promise you
this—there's already a way to do what you want to
do.

However, every now and then, something new
comes along that is genuinely an advance in UI. Back
in 2008, Loren Brichter made a Twitter app called
Tweetie, with a unique pull-to-refresh interaction.
Pulling the view down would show "release to
refresh" and releasing would show a spinner. The
pull-to-refresh interaction went on to be included in
Twitter, which bought Tweetie, and then in iOS and
Android apps in their hundreds.

Page 33

Chapter 10: Don’t Invent New, Arbitrary Controls

So, don't invent new controls… unless they're
astonishingly good.

Learning points
zz Don't invent your own UI
zz There's almost certainly a UI component out

there that does what you need
zz Don't make users learn your new thing

#11
SEARCH SHOULD
BE A TEXT FIELD
WITH A BUTTON
LABELED "SEARCH"

Page 36

Chapter 11: Search Should be a Text Field with a Button Labeled “Search”

Search has, over the years, been over-designed. One
common anti-pattern is hiding search behind a control
to activate it. Slowing the user down and adding an
extra step might remove an input field from your
view but at the expense of familiarity.

If you're offering your users a search function,
then show them a text field with a search button. If
you're using an icon, then use a "magnifying glass"
icon. This is the archetype and using anything else
makes no sense anymore

The "gold standard"

Page 37

Chapter 11: Search Should be a Text Field with a Button Labeled “Search”

On a mobile phone screen, there may not be
enough space to always show the search field, but I'd
still encourage you to evaluate if you can. Tucking
the search field into the top of a scrolling view can
work well:

Search at the top of a list view that only appears when "pulled down"

Bonus points: when the user taps the Search
tab in a mobile app, show the search view, move
the cursor to the search field and show the device
keyboard for them.

Learning points
zz Search should be a text field with a search button
zz Only use the "magnifying glass" icon for search

zz Move the focus to the search field when the
Search tab is tapped on mobile

#12
SLIDERS SHOULD
BE USED ONLY FOR
NON-QUANTIFIABLE
VALUES

Page 40

Chapter 12: Sliders Should Be Used Only for Non-Quantifiable Values

Designer: "Oh, cool, this UI kit has a nice-looking
slider; let's use it for everything!"

User (trying to set a value): *smashes up phone*

I was trying to select 86

If you've ever fiddled with a tiny touchscreen,
while trying to set a value with a slider, you'll
be familiar with the preceding scenario. Even on
a desktop screen with a mouse, it's a pain in the ass.

Slider controls should never be used for setting
specific numeric values. They are, however, great for
volume controls, brightness and color mix values,
where the slider can be used to pick a qualitative
value and the actual numeric value itself doesn't
matter.

For precise numbers, refer to #13, Use Numeric
Entry Fields For Precise Integers.

Page 41

Chapter 12: Sliders Should Be Used Only for Non-Quantifiable Values

Learning points
zz Slider controls should never be used for setting

specific numeric values
zz Use sliders for adjusting qualitative settings like

volume and brightness
zz Make the slider control a sensible size that can

be easily grabbed by the user's pointing device

#13
USE NUMERIC
ENTRY FIELDS FOR
PRECISE INTEGERS

Page 44

Chapter 13: Use Numeric Entry Fields for Precise Integers

If you're trying to get an integer (a whole number)
from a user—for example the number of widgets
they want to order or the number of days an event
runs for—it makes no sense to offer them a free text
input field where they can enter "a few" or " ."
A numeric entry field in HTML is:
<input type="number">

This will display slightly differently on different
devices and that's the whole point. By adapting to the
control system of the client's device, the user gets
simpler entry and makes fewer mistakes. You also get
fewer emoji in your database.

Of course, a huge benefit here is that this will
improve your form conversion rates, by giving users on
both desktop and mobile a quick, painless way to enter
numbers into forms. Users abandon forms because
they're too long, ask for too many details or because
it's difficult to enter information into the form.

Learning points
zz Numeric input controls should be used for setting

specific numeric values
zz Let the browser or device determine the best

input method; don't "build your own" numeric
entry control

zz Forms always require more effort from users than
just consuming content, so minimize the amount
of "things" you ask them for

#14
DON'T USE A
DROP-DOWN MENU
IF YOU ONLY HAVE
A FEW OPTIONS

Page 46

Chapter 14: Don’t Use a Drop-Down Menu If You Only Have a Few Options

A drop-down menu in the user interface is designed
to expand when clicked and present a range of options.
This is fine for country selection or customization,
where there genuinely are lots of options.

There is, however, an overhead to operating
a drop-down menu: the user needs to click to open,
scroll to the correct item, then click to select. On
a mobile device this can be even slower, as the user
will be using a smaller screen.

If you only have two or three options, then don't
jump to using a drop-down straightaway. Consider
whether the options could be better presented to
users with a different kind of control (radio buttons,
sliders, and so on).

Sort your options into a sensible order—
alphabetical or numerical—rather than random.
Don't be the app that asks users to select a floor
of a building in alphabetical order: "First, Fourth,
Ground, Second, Third." Yes, I've seen this!

Very long drop-downs—for example, country
selection—can benefit from a mini search or filter
control: begin typing "U" and only see "Ukraine,
United Arab Emirates, United Kingdom" and so on.
This allows your user to skip to the section they need.

Page 47

Chapter 14: Don’t Use a Drop-Down Menu If You Only Have a Few Options

Mobile users actually have a head start here:
most mobile operating systems will show a full-width
"picker" control for drop-down selection, which
is much less fiddly to use on a small touchscreen:

Picking a blood type with a mobile "picker" UI

Page 48

Chapter 14: Don’t Use a Drop-Down Menu If You Only Have a Few Options

Learning points:
zz Drop-down menus can be a pain, so only use

them if you need to
zz Offer the ability to search in very long drop-

downs
zz Drop-downs can be useful in mobile apps, as the

user will have a specialized UI to use

#15
ALLOW USERS TO
UNDO DESTRUCTIVE
ACTIONS

Page 50

Chapter 15: Allow Users to Undo Destructive Actions

The ohnosecond (https://en.oxforddictionaries.
com/definition/ohnosecond) is the split second when
you realize you've made a terrible mistake. Your
stomach sinks, your trembling hands lift from the
keyboard and you freeze. This moment of horror
could be deleting a customer's records, emailing what
you really think of your boss directly to your boss,
or hitting "buy now" on 111 items, when you really
wanted one.

The best apps allow users to back out of such
actions, either with undo controls or by giving users
the ability to edit actions before they're final. Google's
Gmail has had an optional "undo send" feature for
quite some time. This stores your sent message in
a "buffer" for 20 seconds, giving you that short grace
period to cancel sending. If you just ignore it, you
know the message will be sent shortly. This particular
feature has saved me many times.

https://en.oxforddictionaries.com/definition/ohnosecond

Page 51

Chapter 15: Allow Users to Undo Destructive Actions

Users will feel more in control of your product
because knowing they can undo every action and
recover from mistakes will free them to experiment
more with the product and hopefully get more
from it.

A toast-style notification with an optional "undo" control

From a UI perspective, a nice pattern is to
include the UNDO control on a banner (or toast)
that appears after an action. The user is informed
that their action worked, they see a recap of what
the action was, and they're given a quick shortcut
to reverse that action.

Be forgiving because people make hundreds
of mistakes every day and your users will love you
if your product saves their ass just once.

Learning points
zz Allow users to undo their mistakes
zz Give users a greater sense of freedom and control
zz Be forgiving—people will make mistakes

#16
THINK ABOUT WHAT'S
JUST OFF THE SCREEN

Page 54

Chapter 16: Think About What’s Just off the Screen

Of course, we're mostly concerned with things that
are on the screen, but there are also things you can
hint at that aren't on the screen.

The screen is the user's viewport into your app
and it forms a mental model of how they see your
interface. By showing the edges of items, it's possible
to show the user that there's more to be seen just
off the screen.

This technique, when used well, can provide
a subtle visual cue to the user that there are more
items to be found, while at the same time not taking
up too much screen space.

YouTube shows the edges of related videos when you pause

Page 55

Chapter 16: Think About What’s Just off the Screen

The Opus One app shows calendar dividers to indicate that there are other sections

In both of these examples, this isn't the only
way to get to these other sections—there's a related
video view in YouTube already—but it does provide
a nice hint for new users and a shortcut for
experienced ones.

Page 56

Chapter 16: Think About What’s Just off the Screen

Learning points
zz Showing the edges of items that are just off

screen is a good visual cue for users
zz This shouldn't be the only way to navigate, but

should act as a hint
zz This design pattern is very efficient in terms of

screen space

#17
USE "INFINITE SCROLL"
FOR FEED–STYLE
CONTENT ONLY

Page 58

Chapter 17: Use “Infinite Scroll” for Feed–Style Content Only

Infinite scroll—where the page just keeps scrolling,
loading more items asynchronously as the user hits
the bottom—is extremely handy for users.

Scrolling with a mouse wheel or a touchscreen
is inherently quicker, and simpler, than clicking
through pages, and when the content is a news feed
of Instagram photos or Tweets, it's perfect:

Loading the next few items. I hope

However, infinite scroll should be limited to
only a few types of content. If applied to finite lists
(messages, emails, to-do items, and so on) then the
user has no way of determining a beginning, middle,
and end to the content. When used with this kind
of content, infinite scroll is confusing and slower to
use, so save it for feeds.

Although feeds used to be predominantly
chronological—with the newest items first—more
products (Facebook and Twitter, for example) are
opting to offer users "algorithmically sorted" or
"smart" timelines. The idea is (I assume) to offer
users more relevant tweets or news stories at the top
of their feed, and to allow promoted content like ads
and sponsored posts to appear more prominently.

Page 59

Chapter 17: Use “Infinite Scroll” for Feed–Style Content Only

It may be personal taste, but I really dislike
these smart timelines. First of all, they aim to serve
companies and advertisers over the user, but, secondly,
there is a real discoverability problem: you can't be
sure what you're going to see when you open the
timeline. Is it the latest item? Is it the most relevant?
What happens when you navigate away and come
back? Often, you're shown a new, regenerated list,
making it impossible to find the item you just saw
and thought you could come back to (see #19, If You
Must Use Infinite Scroll, Store The User's Position And
Return To It).

Whether smart or normal, infinite scroll pages
have a couple of other, often overlooked, problems.
They "break" the scroll bar: the scroll position on the
browser window is no longer accurate and it can no
longer be used to navigate up and down the page.
Lastly, page footers become impossible to reach. Bear
that in mind.

Learning points
zz Use pagination for long lists of items
zz Use infinite scroll for news-feed-style content only
zz Remember the user's position if they navigate

away from the feed

#18
IF YOUR CONTENT
HAS A BEGINNING,
MIDDLE, AND END,
USE PAGINATION

Page 62

Chapter 18: If Your Content Has a Beginning, Middle, and End, Use Pagination

Continuing from #17, Use "Infinite Scroll" For Feed–Style
Content Only a paginated, multi-page list may seem
"old school" but it has a few major benefits:

zz It's goal-oriented, so the user is trying to find
the item they need in a list and pagination feels
intuitive, instead of that they are searching
through an endless list

zz It remembers the user's position and displays the
current page to them

zz It conveys a beginning, middle and end to the
content

zz Users can use the scroll bar to navigate the page
and they can reach the footer if they need to

If the user sees that there are "9,999 pages",
then they can make the choice to use a search, sort,
or filter control. They can't make that choice if they
have no idea how many pages there may be:

A great paginator

Page 63

Chapter 18: If Your Content Has a Beginning, Middle, and End, Use Pagination

Show the user the current page, some pages
before and after it, and the lowest and highest pages
in the range. Adding "next" and "previous" buttons
feels unnecessary.

Given all of this, users won't find it easy
to search through very long lists: it's just too
cognitively arduous. A search, sort or filter control
should be considered mandatory on lists of more
than a few pages.

Learning points
zz Use pagination when the content is finite
zz Show the user the current page, nearby pages

and the highest and lowest pages in the range
zz Offer the user search, sot, and filter controls

#19
IF YOU MUST USE
INFINITE SCROLL,
STORE THE USER'S
POSITION AND
RETURN TO IT

Page 66

Chapter 19: If You Must Use Infinite Scroll, Store the User’s Position and Return to It

Often, a user will leave your infinite-scroll feed
to take an action: maybe to favorite an item or post
a comment. From there, they'll hit back (on desktop),
swipe back (iOS) or use the hardware back button
(Android).

Q: Where do they end up?
a.	 �Right back at the top of the infinite-scroll feed

again
b.	 Exactly where they left off

The answer is obviously b), unless you really hate
your users. Sadly, a) is often the case on ecommerce
sites, when browsing a long list of products.

Although the technical implementation details
can be challenging, it's worth putting in the effort
to avoid disorientating users. Viewing a product then
navigating back should always return the user to the
point where they left off.

Learning points
zz Remember the user's position when they navigate

away from long lists
zz Return the user to the same point in the list or

the same page in the paginator
zz Don't disorientate your user unnecessarily

#20
MAKE "BLANK SLATES"
MORE THAN JUST
EMPTY VIEWS

Page 68

Chapter 20: Make “Blank Slates” More Than Just Empty Views

A blank slate is a view that would normally show
a lot of information to a user—a list of projects,
albums, tasks, and so on—but because the user
is new, they haven't yet created anything.

The default behavior of many apps is to simply
show an empty view where the content would be.
For a new user, this is a pretty poor experience and
a massive missed opportunity for you to give them
some extra orientation and guidance.

A blank slate is usually some helpful text, hints
and maybe a friendly graphic or icon. Now, because
these views can appear on a per-feature basis, it's
easy to be very task-oriented in the advice you give.
If the user views the to-do list, you can give advice
on making the first to-do item.

Page 69

Chapter 20: Make “Blank Slates” More Than Just Empty Views

On a profile, you can give the user guidance to
include a bio or add an avatar picture.

The Basecamp to-do list before the user has created any items

Shopify welcomes new users with a recap of what they can do

Page 70

Chapter 20: Make “Blank Slates” More Than Just Empty Views

The blank slate is only shown once (before the
user has generated any content), so it's an ideal way
of orienting people to the functions of your product,
while getting out of the way of more established
users who will hopefully "know the ropes" a little
better. For that reason, it should be considered
mandatory for UX designers to offer users a useful
blank slate.

Learning points
zz Use blank slates to orient new users
zz Be task-oriented in the advice you give to users
zz Be specific in your advice if you offer blank slates

on a per-feature basis

#21
MAKE "GETTING
STARTED" TIPS
EASILY DISMISSABLE

Page 72

Chapter 21: Make "Getting Started" Tips Easily Dismissable

A blank slate (refer to #20, Make "Blank Slates" More
Than Just Empty Views) won't show once the user adds
some content or performs an initial task, which is
ideal.

Too often, apps force users to view their "getting
started" guide or "tips for beginners." They are
often good for new users, but if you're coming back
to an app you've used before then they're incredibly
frustrating.

An extra level of rage is induced when an app
update "reset" these tips and existing users are forced
to sit through the tutorial all over again just to use
the app. Make tips optional and dismissable. You'll
get bonus points for letting users exit the entire
"onboarding wizard" with one tap:

Tell users what you're about to tell them before you actually tell them

However, beware of overdoing these tips: if
you've followed conventions (and basically, the rest
of this book), there shouldn't be a need to explain
every little detail of your app's UI.

Page 73

Chapter 21: Make "Getting Started" Tips Easily Dismissable

If you have designed and delivered a UI where
you have to explain "You can search for things here,"
and "Your past entries appear here," and "Click
here to create a new entry," then your UI is too
complicated and needs to change.

Learning points
zz Let users easily leave onboarding wizards
zz Allow the whole tutorial to be skipped in one

action
zz Resist explaining too much about your UI

#22
WHEN A USER
REFRESHES A FEED,
MOVE THEM TO THE
LAST UNREAD ITEM

Page 76

Chapter 22: When a User Refreshes a Feed, Move Them to the Last Unread Item

Typically, a feed (or any list of items) will have links
on each item to view them or perform actions on them.
This means that users may well be navigating back
and forth to these lists.

Imagine a list of news items; it's likely that a user
would read the list, then choose one or more news
items to read, each time navigating back to the list
view. Don't simply reload the feed and put the user
back to the start again, you monster!

Twitter shows the user how many "tweets" behind
they are, allowing them to manually reload if they
wish, but not altering the feed without their explicit
action:

Twitter getting something right for a change

Of course, technically, the feed may well have
changed in the time it took the user to read the story,
but if it keeps updating, it's disorienting and difficult
to use. Yes, this means additionally keeping track of
where your user's scroll position is, but it's worth it
for the usability benefit.

Page 77

Chapter 22: When a User Refreshes a Feed, Move Them to the Last Unread Item

Learning points
zz Return users to the same place that they came

from
zz Don't reload or refresh feeds while a user is using

them
zz Give the user an option to manually refresh the

feed while they're using it

#23
DON'T HIDE
ITEMS AWAY IN A
"HAMBURGER" MENU

Page 80

Chapter 23: Don't Hide Items Away in a "Hamburger" Menu

Few UI patterns can be as controversial as the
hamburger menu. Over the past five years, it's become
the de facto way of offering a menu on small displays,
typically as a website scales into mobile or tablet
width using responsive design:

The dreaded hamburger

Research shows ("Hamburger Menus and Hidden
Navigation Hurt UX Metrics" NNG, (https://www.
nngroup.com/articles/hamburger-menus/) 2016) that
hamburger menus:

zz Slow down discovery time for users
zz Increase perceived task difficulty
zz Slow down time to complete a task

Simply put, the hamburger menu hides items
away from users and makes them less discoverable.
Additionally, because the menu is hidden, users can't
gain a sense of "where they are" in the product.

https://www.nngroup.com/articles/hamburger-menus/

Page 81

Chapter 23: Don't Hide Items Away in a "Hamburger" Menu

Some alternative design patterns to the hamburger
menu:

zz Navigation on the bottom of the view: Made
popular by iOS apps, you can get four or five
key features into an ever-present bottom menu
and maybe make the fifth item "fly out" with
advanced tools.

zz Tabbed navigation: Inverting the above, and
popularized by Android apps, items can live at
the top of the view.

zz Vertical type: Pin your navigation to the left of
the view and orient the type vertically. It won't
solve every problem, but if you have fewer than
six or seven items, it's better than the hamburger.

In some circumstances, for example if your app
has a lot of features that need to be "possible"
(see #96, Decide Whether an Interaction Should Be Obvious,
Easy, or Possible), the usability trade-off seems worth
making, in order to offer these features on mobile
rather than removing them, but never use a hamburger
menu on the desktop.

If you must use a hamburger menu, then label it
menu and spare the user the much-maligned "three
lines" icon.

Page 82

Chapter 23: Don't Hide Items Away in a "Hamburger" Menu

Learning points
zz The hamburger menu slows down discovery for

users
zz By hiding menu controls in this way, users can't

get a sense of their location
zz Consider alternatives to the hamburger menu, but

if you must use one, label it

#24
MAKE YOUR LINKS
LOOK LIKE LINKS

Page 84

Chapter 24: Make Your Links Look Like Links

Links, or hyperlinks, are the basis of the web and were
one of the key advances when Sir Tim Berners-Lee
invented HTML in 1989. In the original browsers,
clickable links were blue, italic, and underlined. They
looked gaudy and out of place, but that was the
point: it was a brand new concept and users needed
a way of telling a link apart from the rest of the
text on the page.

Fast-forward to the present day and the practice
of styling links has largely been abandoned in favor
of only highlighting them when they're hovered
over or, worse, adding no visual affordances to them
whatsoever.

The style-on-hover approach is less than ideal:
users on touchscreen devices have no hover state.
Meanwhile users with a mouse end up "hunting" for
links by hovering over parts of text bit by bit, hoping
to find a link, or just never finding them at all.

A gov.uk page with clear links and nice controls

Page 85

Chapter 24: Make Your Links Look Like Links

Asking the user to click things just to work out
what they do (or whether they do anything at all)
is insane. This kind of design decision is a classic
example of form over function. If you're making
your users guess what links do, because you think
that "minimalism" means adding so few affordances
that controls are impossible to use, then you're wrong.
I don't care what the marketing guy say: make your
links underlined.

Learning points
zz Make links look like links with visual affordances
zz Don't make non-links look like links
zz Don't make your users hunt for clickable controls

#25
SPLIT MENU
ITEMS DOWN
INTO SUBSECTIONS,
SO USERS DON'T
HAVE TO REMEMBER
LARGE LISTS

Page 88

Chapter 25: Split Menu Items Down into Subsections, so Users Don't Have to Remember Large Lists

Humans are better at some things than others. We're
really good, for example, at drawing a pretty picture
of a flower, but we're not so good at instantly
recalling the precise genus of that flower and its
scientific name. Computers are better at that kind
of thing.

The rule of thumb for the number of items that
a person can reasonably remember and juggle in
a list, is "seven, plus or minus two." (The Magical
Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing
Information, George A. Miller (1956)

(https://www.ncbi.nlm.nih.gov/pubmed/13310704)).
This research has been around since the 1950s and
has been revised and re-evaluated many times over
the years. I'll spare you the psychological study details,
but the short version is: it's pretty much true.

https://www.ncbi.nlm.nih.gov/pubmed/13310704
https://www.ncbi.nlm.nih.gov/pubmed/13310704
https://www.ncbi.nlm.nih.gov/pubmed/13310704
https://www.ncbi.nlm.nih.gov/pubmed/13310704

Page 89

Chapter 25: Split Menu Items Down into Subsections, so Users Don't Have to Remember Large Lists

The "magic number seven" will change depending
on the items being recalled, the context, and
environmental factors like state of mind, but it's
as good a starting point as any. The point is: users
can't manipulate and recall long lists of items in their
minds.

How not to present users with the categories of your store

If you're presenting a user with a list of options,
keep in mind that by the time they've read the
seventh or eighth option, they will likely have "filled
the buffer" in their mind to capacity, and will struggle
to remember what the first option was.

Page 90

Chapter 25: Split Menu Items Down into Subsections, so Users Don't Have to Remember Large Lists

This also applies to menus, as well as sections
and categories. All of these tasks are better served by
other UI patterns described elsewhere in this book.

Try to group menus into sections, or reduce
the complexity of options, so that the user doesn't
have to struggle to recall them. Hide extra settings
in "advanced" settings, for example. Your users are
(probably) humans, not robots.

Learning points
zz Users can read, manipulate and recall roughly seven

items in a list
zz After more than seven or so items, the user will

struggle to use the list
zz Group similar items into sections

#26
HIDE "ADVANCED"
SETTINGS FROM
MOST USERS

Page 92

Chapter 26: Hide "Advanced" Settings From Most Users

There's no need to include every possible menu option
in your menu when you can hide advanced settings
away. Group settings together, but separate out the
more obscure into their own section of "power user"
settings, which should be also grouped into sections
if there are a lot of them (don't just throw all the
advanced items in at random).

Not only does hiding advanced settings have the
effect of reducing the number of items for a user to
mentally juggle (refer to #25, Split Menu Items Down
into Subsections, so Users Don't Have to Remember Large
Lists), it also makes the app appear less daunting, by
hiding complex settings from most users.

By picking good defaults (refer to #92, Pick
Good Defaults), you can ensure that the vast majority
of users will never need to alter advanced settings.
For the ones that do, an advanced menu section
is a pretty well-used pattern.

The macOS system preferences panel is well categorized

Page 93

Chapter 26: Hide "Advanced" Settings From Most Users

Settings pages should be structured based on
"jobs to be done", not necessarily on system function.
For example, all the settings for "sound" are in one
place and "video" in another. This seems obvious
and many operating systems get this right, but many
software products don't, instead throwing all the
settings into one long settings menu, which is too
dense and long to work with.

The macOS system preferences panel (in the
preceding image) does this well by sorting items
by conceptual area, rather than system function.
Keyboard, Mouse, and Trackpad all have their own
views, instead of calling them "Input" and lumping
them together into one confusing view.

Although there are a lot of items, iOS groups them into sections

Page 94

Chapter 26: Hide "Advanced" Settings From Most Users

You get bonus points for putting a "search" field
on particularly long or complex settings views.

Learning points
zz Hide advanced settings behind another level of

navigation
zz Group items together by jobs to be done or

conceptual area
zz Remember the "seven plus or minus two" rule

for long lists of items

#27
REPEAT MENU ITEMS IN
THE FOOTER OR LOWER
DOWN IN THE VIEW

Page 96

Chapter 27: Repeat Menu Items in the Footer or Lower Down in the View

Your site's navigation is at the top of the view,
but the user has scrolled right down the view—no
doubt captivated by the wonderful, engaging content
you've provided—so how do they return to the top
of the page?

Most mobile browsers have a shortcut where
tapping the top bar of the app will scroll the page
up. There's no need to provide a "back to top" link
that floats down the page: it's a waste of space.

A great solution is to repeat main menu items
in the footer of the page or, at the very least, add
some shortcuts to popular parts of the site. Including
a "mini breadcrumb" is more useful than a "back to
top" link, as the user can hop back up a level to find
the next item.

Mozilla's footer

Page 97

Chapter 27: Repeat Menu Items in the Footer or Lower Down in the View

Mozilla's footer (above) strikes a nice balance
between not being overly cluttered and providing
useful links to top-level sections of its navigation
hierarchy. Some sites decide to include a search
control in the footer, which can be a smart idea: the
user may not have found what they were looking
for on the page, so this gives them a way to search
the site.

Learning points
zz Repeat navigation items in the footer
zz Don't make footers a "dead end"
zz Consider offering a search function in the footer

if it makes sense to do so

#28
USE CONSISTENT
ICONS ACROSS
THE PRODUCT

Page 100

Chapter 28: Use Consistent Icons Across the Product

A UI packed with seemingly random, disparate icons
is a usability disaster. I know what happened: you
started using an icon set because it looked cool,
then you realized it didn't have an icon for "upload"
or "download".

The UI review meeting is later on today and you'd
better get an icon in there quick! So, you use and

 instead. Except, they look totally different to the
rest of the app and users have to spend those extra
few seconds working out that, yes, they are actually
part of the UI too.

Don't be lazy when it comes to icons: pick
a metaphor and stick with it. This may mean extra
illustration effort to produce new icon elements that
are in keeping with the icon style, but that effort will
pay off in increased usability for the end user.

Learning points
zz Use a consistent icon style across the product
zz Don't take a shortcut by including disparate icons
zz Take the extra time to build a coherent icon style

#29
DON'T USE
OBSOLETE ICONS

Page 102

Chapter 29: Don't Use Obsolete Icons

For about 20 years, the "floppy diskette" icon has
meant "save" and this connection still persists in UI
across desktop and web apps. It was a great visual
metaphor for a long time, but things have changed
and many users under the age of 20 will have never
laid eyes on a floppy disk.

Other examples include old telephones with
handsets, curly cords and rotary dials; radio
microphones from the 1950s; and reel-to-reel tape
recorder icons to mean "voicemail".

Ten years from now, nobody will know what any of these are

Page 103

Chapter 29: Don't Use Obsolete Icons

Try to think about how the visual metaphors you
use will work for different age groups, cultures and
languages. Searching for the right visual metaphor for
an icon is hard but rewarding, and your users will
benefit from increased familiarity with your product.
As designers, we're in need of a new standardized icon
for "saving" (which these days means sending your
data to a web-based service), rather than a removable
or hard disk.

"Save to the cloud," perhaps? Icon by The Noun Project/Jeevan Kumar

Icons will always have a degree of ambiguity, but
they should always be shown with a text label to
reduce this (see #32, Always Give Icons a Text Label).
The icon should serve primarily as a visual cue or
shorthand, as well as a tappable (or clickable) target.

Page 104

Chapter 29: Don't Use Obsolete Icons

Like most things in design, icon selection benefits
from testing with real users (refer to #101, Test with
Real Users). Ask users what they think a proposed
icon means to them and see if they can recall your
icon later.

Learning points
zz Don't use icons that depict obsolete technologies

or visual metaphors
zz Always show icons with a text label to reduce

ambiguity
zz Test your icons with real users

#30
DON'T TRY TO DEPICT
A NEW IDEA WITH
AN EXISTING ICON

Page 106

Chapter 30: Don't Try to Depict a New Idea With an Existing Icon

Occasionally, you'll need to invent a whole new icon.
If the concept you're trying to describe is novel, then
your users will need an icon that doesn't confuse
them by referencing another idea. It needs to be
new, yet recognizable, and mappable onto a real-
world example. If this sounds difficult to you, that's
because it is.

Thankfully, the need to create an entirely new
icon is very rare because most of the concepts in
your app will be better served by existing UX patterns
and UI conventions, but there may be a case where
you have a new concept.

The middle ground here (using an existing icon to
depict a new concept) is the worst of all worlds: it's
confusing for users who have seen the icon before
in other products, with a different meaning behind it.

Spare a thought for these poor guys...

Some of the most misused icons in this
category are:

zz The WiFi "fan" icon
zz The generic "cloud" icon
zz The globe icon

Page 107

Chapter 30: Don't Try to Depict a New Idea With an Existing Icon

These icons can be seen frequently depicting ideas
as diverse as "upload", "save", "share", "email", and
so on. I've seen the WiFi icon being used to depict
"pay with your contactless card." It's jarring and
utterly confusing.

It's understandable that sometimes mistakes are
made, but too often this is simply laziness: it can be
hard to find the right icon and even harder to create
a new one.

There are many large searchable directories
of icons online (some of them are royalty-
free, l ike my favorite at the moment, called
The Noun Project, (https://thenounproject.com/))
and it's always worth a quick search on such sites
to see what other designers have used to depict
concepts.

This is another case where copying the patterns
of others (many of these icons are available for
reuse without a fee) is great for the user: they will be
familiar with the patterns from other applications and
uses, and you can save them learning and cognitive
time by reusing these icons.

Learning points
zz There's probably an icon out there that suits your

needs already
zz Don't use an existing icon for a new concept
zz Check whether there are open source or public

domain icons already

https://thenounproject.com/

#31
NEVER USE
TEXT ON ICONS

Page 110

Chapter 31: Never Use Text on Icons

Icons are supposed to be simple pictures that depict
a concept. They are a shorthand visual reminder for
users that what they're about to click is the thing
they want.

Often, icon designers get frustrated that their
pictogram isn't quite right, as it isn't quite recognizable
or distinct enough. Instead of solving the problems
with the picture, they opt to simply add a line of text
into the icon design. Note that I'm not talking about text
labels for icons—those are essential—I'm referring
to the shady practice of including text within the
icon itself.

Three icons with text as part of the icon

First off, this is lazy design, but secondly, and
more importantly, it breaks translation and accessibility
functionality. Whether your product is a website,
which can be translated with an online service like
Google Translate, or a self-contained app, which will
be internationalized with "strings" of copy, the text in
icons won't get translated and users will get confused.

Page 111

Chapter 31: Never Use Text on Icons

Users with accessibility needs who are using
screen-reading software, will run into problems too:
the software won't be able to "speak" text that's
included on the icon. Spend that extra bit of time
and effort building (or sourcing) icons that convey
their meaning without text.

Learning points
zz Don't include text inside icons
zz Text within an icon can't be translated or read

with assistive technologies
zz Include text labels with icons but not text in the

icon itself

#32
ALWAYS GIVE
ICONS A TEXT LABEL

Page 114

Chapter 32: Always Give Icons a Text Label

Now, I don't mean text on the icon (see #29, Don't
Use Obsolete Icons)—I mean a text label near the icon,
not just an icon on a button on its own. Small,
nondescript buttons, with obscure mystery icons on
them, are next to useless and consistently perform
terribly in user tests. There are exceptions to this—
frequently-used controls (like bold, italic, underline,
and so on.) can be recognized without a text label,
but icons in a main menu or toolbar really need
descriptive text next to them.

Let's go back to the original purpose of the
icon—to provide a quick visual shorthand by which
the user can instantly recognize a control, and to
provide a target for the user to click or tap. The icon
isn't meant to describe a button the first time that the
user sees it—the user will need a text label for that.
However, if the icon is distinct and recognizable, then
the user will locate the control and recall its purpose
more quickly with an icon.

Which is easier to understand?

Page 115

Chapter 32: Always Give Icons a Text Label

Icons are used and misused so relentlessly, across
so many products, that you can't rely on any one
single icon to convey a definitive meaning. For
example, if you're offering a "history" feature—
there's a wide range of pictogram clocks, arrows,
clocks within arrows, hourglasses, and parchment
scrolls to choose from—the user needs a text label
to understand what this icon means in this context
within your product.

Often, a designer will decide to sacrifice the
icon label on mobile responsive views. Don't do
this. Mobile users still need the label for context.
The icon and the label will then work in tandem to
provide context and instruction, and offer recall to
the user, whether they're new to your product or use
it every day.

Learning points
zz Show text labels with icons at all times
zz Don't hide or obscure labels on mobile versions
zz Icons on their own are a major source of

frustration for users

#33
EMOJI ARE THE MOST
RECOGNIZED ICON
SET ON EARTH

Page 118

Chapter 33: Emoji are the Most Recognized Icon Set on Earth

If your goal is to deliver interfaces with simple, usable
icons that feel immediately familiar and intuitive, then
use emoji.

Emoji have been used in Japan since the 1990s
but Apple's iOS brought them to the Western world
almost by accident —it had to support emoji for
a deal with Japanese carrier SoftBank. Over time,
Western users activated the international keyboard
and began to use emoji. This culminated in Oxford
Dictionaries naming " " as "word of the year"
in 2015.

Put simply, the vast majority of people who use
computer systems, smartphones, and tablets will be
familiar with emoji.

Page 119

Chapter 33: Emoji are the Most Recognized Icon Set on Earth

They have a (relatively) standardized look across
multiple platforms and there's a large range to choose
from.

The "MAKE" book by Pieter Levels uses emoji well on its landing page

Simple, commonly used controls like media
playback, have a complete icon set that the whole
world understands, supported out of the box on
every major platform:

Page 120

Chapter 33: Emoji are the Most Recognized Icon Set on Earth

Consider using emoji as part of your product's
visual language.

Learning points
zz Emoji might not be right for every situation, but

they are extremely well-recognized and understood
zz The vast majority of users of electronic devices

will have encountered emoji at some point
zz They can be used for extremely s imple

interactions, making them available to users who
may be illiterate or have low reading ability

#34
USE DEVICE-NATIVE
INPUT FEATURES
WHERE POSSIBLE

Page 122

Chapter 34: Use Device-Native Input Features Where Possible

If you're using a smartphone or tablet to dial
a telephone number, the device's built-in "Phone" app
will have a large numeric keypad that won't force you
to use a fiddly QWERTY keyboard for numeric entry.

Sadly, too often, we ask users to use the wrong
input features in our products. By leveraging what's
already there, we can turn painful form entry
experiences into effortless interactions.

The iOS "picker" control replaces fiddly drop-down menus

Page 123

Chapter 34: Use Device-Native Input Features Where Possible

Drop-downs should let users use the device's
full-width picker control and numeric entry should
show a numeric keypad. For example, you can achieve
the numeric keypad in web forms by adding the
type=tel attribute to the input field in HTML. This
will show the telephone keypad in both iOS and
Android browsers:

The telephone keypad in Android

No matter how good you are, you can't justify
spending the time and money that these companies
have spent on making usable system controls. Even if
you get it right, it's still yet another UI for your user
to learn, when there's a perfectly good one already
built into their device. Use that one.

Page 124

Chapter 34: Use Device-Native Input Features Where Possible

Learning points
zz Shortcut your way to success by using UI already

built for you
zz Using device-native input controls means that

users have one less thing to learn
zz This isn't just for mobile users: desktop software

should use the right controls for those input
methods

#35
OBFUSCATE PASSWORDS
IN FIELDS, BUT PROVIDE
A "SHOW PASSWORD"
TOGGLE

Page 126

Chapter 35: Obfuscate Passwords in Fields, but Provide a "Show Password" Toggle

It still makes sense to obfuscate ("star out") passwords
as they're being entered, but let's be real, shoulder-
surfing isn't possible when you're signing in to an app
on your couch.

Providing a "show password" toggle is not only
great for usability, but also improves security: users
can enter longer, more complex pass-phrases and be
confident that they can retype them correctly. Default
to obfuscating the password, but provide a checkbox
or toggle that allows the user to see their password.

Yes, I know we should all be using a password
manager (a plugin that generates and stores all your
site passwords for you), but the fact remains that
most regular users don't.

Show the password strength rules. Don't make
users try and try again to enter passwords, only to be
told later that they need to have a certain obscure
combination of letters, numbers and symbols. Show
the user the rules the whole time that the password
field is visible.

Finally, there's no need to force users to enter
a password twice, just to check that they got the
password correct. It slows users down, creates an
unnecessary "test" for them to pass, and serves little
purpose: if they did misspell their password, they
can simply do a password reset later down the line.

Page 127

Chapter 35: Obfuscate Passwords in Fields, but Provide a "Show Password" Toggle

Learning points
zz Obfuscate passwords but let the user toggle them

to visible
zz Show the user any rules that they need to follow

when creating a password
zz Don't ask the user to retype the password when

setting it

#36
ALWAYS ALLOW THE
USER TO PASTE INTO
PASSWORD FIELDS

Page 130

Chapter 36: Always Allow the User to Paste into Password Fields

It's difficult to fathom where this pattern of disabling
paste came from or what possible security issue it's
supposed to address. Using some JavaScript on the
page to prevent users from pasting into a password
field is insane and potentially harmful for security.

A user with a password manager app will have
a long, impossible-to-remember password that has
to be pasted into the field (especially on mobile,
where it's more tricky to autofill the field).

It's a good general rule across the board to not
interfere with standard system behaviors (copy, paste,
find, zoom, right-click, and so on), as they are all
basic interactions that the user will have grown
accustomed to over years of working with various
devices. To deliberately disable these behaviors on
your product is nonsensical, yet it still happens.
Designers think that they can improve security, reduce
plagiarism, or other factors that aren't user-centric.

Page 131

Chapter 36: Always Allow the User to Paste into Password Fields

Back in the 1990s, "webmasters" would disable
right-click to prevent users from copying images. This
worked for about five seconds, until people realized
that they could just screen capture the image.

Security expert Troy Hunt has lots to say (Troy Hunt (https://www.troyhunt.
com/the-cobra-effect-that-is-disabling/): "The 'Cobra Effect' that is disabling

paste on password fields.") on this phenomenon.

Disabling paste in a password field forces users
to only use weak, easy-to-remember passwords.
If you've disabled paste on a password field, then
you need to have your laptop taken away from you.

Learning points
zz Don't disable paste on password fields
zz Don't interfere with any basic system interactions

like copy, paste, find, and right-click
zz Allow users to use password managers with your

product

https://www.troyhunt.com/the-cobra-effect-that-is-disabling/

#37
DON'T ATTEMPT
TO VALIDATE
EMAIL ADDRESSES

Page 134

Chapter 37: Don't Attempt to Validate Email Addresses

Your user is entering an email address and you're
thinking about writing some code to validate
it (check that it's in a sensible format and they haven't
entered gibberish or mistyped it). Think again.

It used to be so simple to validate email addresses
on the client side. A little bit of JavaScript was all
it took to check that the domain was in the format:

user@domain.tld

If it didn't match this pattern, it wasn't a valid
email and the user couldn't sign up. We used to only
have a handful of top-level domains (TLDs). Now,
we have over 1,000 TLDs, with more being added
all the time:
stealthy+user@example.ninja

holidays@ .ws

email@www.co

website@email.website

The above addresses are all valid domains*, but
the TLD list changes all the time, so good luck
writing the JavaScript to validate them—there are too
many edge cases.

The side effect of this is that any errors will
prevent legitimate users from signing up or using
your product, leading to device-smashing levels
of frustration and lost signups for your product.

Page 135

Chapter 37: Don't Attempt to Validate Email Addresses

Simply make your input field an "email" input
(in HTML: <input type="email">) and let the
browser and device figure the rest out (some will
autofill or suggest the user's email address). You still
may want to verify these addresses on the server side
by sending a one-click link in an email to verify.

* Please don't email these people, in case they
are real!

Learning points
zz Don't validate emails on the client side
zz Tell the browser or device that you're collecting

an email address
zz Verify emails on the server side with a one-click

verification link

#38
DON'T EVER CLEAR
USER-ENTERED DATA
UNLESS SPECIFICALLY
ASKED TO

Page 138

Chapter 38: Don't Ever Clear User-Entered Data Unless Specifically Asked To

Your long-suffering user has painstakingly entered
field after field of data into your form, often on
a tiny mobile screen with an on screen keyboard.
Don't clear this data unless the user specifically
abandons the f low (maybe by hitting cancel).
If clicking something is going to reload the page, and
this might potentially fail, then make sure you save
the user-entered data first.

This is an interesting example of where technical
reality meets UX. On the one hand, if a browser
could speak, it would likely argue that reloading
a form should clear it, as we're literally telling the
browser to fetch the empty form again. However,
we're not robots, we're humans, and so much of good
user experience design is about empathy and respect.
This includes respecting the user's time and effort,
and demonstrating empathy for what they're trying
to achieve. Reloading a form with all the user's data
removed is one of the lamest things you can do and
nothing makes people angrier.

Learning points
zz Don't ever clear user-entered data without explicit

permission
zz Treat the user's time with respect
zz Put yourself in their shoes: would you want

to type all this stuff in again?

#39
PICK A SENSIBLE
SIZE FOR MULTILINE
INPUT FIELDS

Page 140

Chapter 39: Pick a Sensible Size for Multiline Input Fields

Forms need to be as frictionless as possible, because
they are a huge barrier and conversion is low, so make
them as easy for the user to complete as possible.

Sometimes, we need to ask users for more than
a simple one- or two-word answer (like a name) and
a multiline input field (or "text area") is needed.
A common mistake on the web (and in some desktop
apps) is to provide a text area that is way too big or
way too small.

If the text area is way too big, and the user has
to manipulate the viewport to see what they're typing,
then you're wasting valuable screen space.

A text area that is way too big for the intended input

Page 141

Chapter 39: Pick a Sensible Size for Multiline Input Fields

If the text area is way too small, then the user
has to scroll around inside the field to see what
they've written.

An impossibly small input field for lots of text

Think through the common responses in these
fields and judge the size accordingly. This is a classic
example of how a little UX thought before the UI
design phase can massively improve the experience
for most users.

Learning points
zz Pick a sensible size based on how much text the

user has to enter
zz Don't just use default sizes: adjust them for each

use case
zz Consider these things early in the design phase

#40
DON'T EVER MAKE
YOUR UI MOVE
WHILE A USER
IS TRYING TO USE IT

Page 144

Chapter 40: Don't Ever Make Your UI Move While a User is Trying to Use It

Only a psychopath would deliberately make their
UI move, forcing users to "press and guess" as they
try to tap or click controls.

The prevalence of Flash on the web in the
late 1990s and early 2000s led to many designers
introducing UI animation just because they could, and
it's almost always a bad idea. Unfortunately, UI can
and does move due to unintentional factors and users
are left frustrated.

Do these scenarios feel familiar? Have you had
a web page load, but the advertising elements are
served from a different, slower server? As the page
loads, the introduction of these ads "shunts" the page
elements around, meaning that you click or tap on
the wrong part of the page.

This can be solved by testing, then introducing
placeholders to reserve space for slow-loading elements,
preventing the page from moving as it loads.

Maybe you're operating a control in a mobile
app, when a time-sensitive notification appears—
just under your finger as you go to tap something
else—taking you out of your app and into another,
unintended app. So-called "micro animations", where
UI controls fade in and out as they're presented, or
menus animate in or out, aren't necessarily a bad
thing, as long as they're:

zz Subtle, so as not to distract the user
zz Short, so as not to interrupt the key task

Page 145

Chapter 40: Don't Ever Make Your UI Move While a User is Trying to Use It

UI control elements shouldn't move while the
user is trying to use them.

I probably encounter these faults on a weekly
basis, so, please, if you're asking users to control your
software, don't make the controls move.

Learning points
zz Keep UI control elements static
zz Micro animations are fine, but keep them short

and subtle
zz Test how your interfaces appear on a range of

devices and connection speeds

#41
USE THE SAME DATE
PICKER CONTROLS
CONSISTENTLY

Page 148

Chapter 41: Use the Same Date Picker Controls Consistently

This problem is less pronounced than it used to be,
thanks to browsers and mobile device makers
producing more consistent date picker UI. By
triggering the device-native date picker, you can
give the user an experience they're familiar with and
a UI that has been designed for their device.

It's not always possible, however, as some tools
need a more complex or more advanced interface for
selecting dates, ranges of dates or comparison date
ranges. When this is the case, always use the same
date picker control everywhere in your app. Showing
a different set of controls for the same task in a different
part of your product will confuse users and reduce
your conversion rates.

A common place that this mistake is made
is on holiday or hotel booking sites. The home page
will often have a big, clear date picker, designed to
convert casual visitors into "searchers" when they land
on the site. Once the user is deep into their journey,
and they're asked to refine a date range, or pick flights
or a hire car, that's when the bad UI creeps in and
they're shown a different date picker.

Please be consistent with your UI—don't force
your customer to learn yet another date picker.
It might only take your user an extra second but
respect your user's time. Life really is too short to
wrestle with bad UI.

Page 149

Chapter 41: Use the Same Date Picker Controls Consistently

Learning points
zz Use the same style of date picker across your

product
zz Using system-native controls can help to enforce

this consistency
zz Forcing users to adapt to multiple versions of the

same control will confuse them and reduce your
conversion rates

#42
PRE-FILL THE
USERNAME IN "FORGOT
PASSWORD" FIELDS

Page 152

Chapter 42: Pre-fill the Username in "Forgot Password" Fields

If your user has tried to log in and failed, it's a safe
bet that their next action will be to click "forgot
password." Don't make them enter their email again—
pre-fill the username field with the entry from their
earlier login, so the user can just tap "reset password"
and be on their way.

The forgot password flow of an app is—certainly
from metrics I've seen—a very well-used feature.
In fact, a user who uses a difficult password, forgets
it, then resets it every time, is probably more secure
than a user who just uses a weak password. So, let's
make the forgot password field easy by following
these rules:

zz If the user gets their password wrong, pre-fill
the username field with the last-used username
(or email) and show a "forgot password" button

zz When they hit the button, email (or SMS) them
a link that expires within a sensible time period

zz The link, when tapped, should open a page for
them to type a new password

zz If the link is used more than once, it should still
work (users accidentally double-click links often)

zz When the new password is set, the user should
be automatically signed in to the product

Reducing the frustration of not being able to
sign in for returning users is a great move that will
dramatically improve their experience.

Page 153

Chapter 42: Pre-fill the Username in "Forgot Password" Fields

Learning points
zz A user doing a password reset has already given

you their username, so reuse it
zz Allow them to reset their password with a simple

tap or click of a link
zz Sign them in once the password is reset

#43
BE CASE-INSENSITIVE

Page 156

Chapter 43: Be Case-Insensitive

Lots of systems are case-insensitive by default,
but you don't notice it because that's how it should
be and it works really well. For example, emailing
Will@WillGrant.org goes to the same place as
will@willgrant.org. Visiting www.WikiPedia.ORG
takes you to the same site as www.wikipedia.org.

The email system and domain name system
are both case-insensitive, which was a good call.
Thousands of person-years of technical support time
have likely been avoided by this decision.

Despite this, you can still find apps and websites
where you have to sign in with a case-sensitive
username or email address. Not only does this lead
to errors—a user who can't sign in because their
username had a capital letter they forgot about—
but even if they do remember, switching between
lowercase and uppercase letters on a fiddly mobile
keyboard is a pain in the ass.

Misusing case-sensitivity creates a very opaque
error for the user—they're usually not sure why
it doesn't work and that's often the most frustrating
type of error.

Passwords should always be case-sensitive. For
everything else, default to case-insensitive unless you
have a very good reason for case-sensitivity.

http://www.WikiPedia.ORG
http://www.wikipedia.org

Page 157

Chapter 43: Be Case-Insensitive

Learning points
zz Default to case-insensitive if you're not sure
zz Always make passwords case-sensitive
zz If something has to be case-sensitive, tell the user

this is the case

#44
IF A GOOD FORM
EXPERIENCE CAN
BE DELIVERED,
YOUR USERS WILL
LOVE YOUR PRODUCT

Page 160

Chapter 44: If a Good Form Experience Can Be Delivered, Your Users will Love Your Product

Almost every kind of software product features
a form (a page with inputs for text, numbers and
other data that the user has to fill in). They are often
the source of major frustration, but if you make your
forms and data entry work well, your customers will
thank you and your conversion rates will improve.

People generally hate filling in forms—it's slow
and can be clunky and cumbersome—so let's make
users' lives easier by streamlining and optimizing the
data entry process.

This support request form asks for information that the system already knows

Page 161

Chapter 44: If a Good Form Experience Can Be Delivered, Your Users will Love Your Product

The first rule of Form Club is: don't ask for more
information than you need. Time and again, users are
asked to sign up to sites that ask for:

zz First name
zz Last name
zz Middle initial
zz Email address
zz Title
zz Organization
zz Street address
zz Town
zz County
zz State
zz Postal code (ZIP code)
zz Telephone number (home)
zz Telephone number (cell)
zz Telephone number (office)
zz Password (with some arbitrar y password

complexity rules)
zz Password (type it again)

At this point, your users are close to giving
up joining your product or service. You just don't
need all of this stuff. Your engineers might have
designed the user tables to support it, and maybe your
marketing people want it for demographics or direct
mailing, but your users don't want it. Kill it.

Page 162

Chapter 44: If a Good Form Experience Can Be Delivered, Your Users will Love Your Product

In the ideal situation, a user should be able to
join your product with:

zz Email or cell phone number
zz Password (only once—if they get it wrong, they

can do a reset)

If you really need other stuff, then:

zz Name (any number of names, separated by
spaces). The user could add this to an optional
profile, rather than it being part of mandatory
onboarding.

zz Address (house number, street and postal code/
ZIP code should be enough) but seriously,
if you're not shipping physical items to the
customer, why ask for this? It's organization-
centric, not user-centric.

Asking your user to enter reams of information
on forms is a surefire way to reduce conversion
to a fraction-of-a-percentage level. If it's the kind of
form they have to fill in, at least tell them why you're
asking for the data and how it will be used. So many
products get this wrong, so it's a great opportunity to
deliver a good form experience and build a product
that people love to use.

Read on for several form-related principles that
may just change your life.

Page 163

Chapter 44: If a Good Form Experience Can Be Delivered, Your Users will Love Your Product

Learning points
zz Don't ask for more information than you need
zz Explain to the user why you're collecting it and

what you will do with it
zz Every additional field you add to a form reduces

conversion

#45
VALIDATE DATA ENTRY
AS SOON AS POSSIBLE

Page 166

Chapter 45: Validate Data Entry as Soon as Possible

Validation on a form means showing the user visual
feedback that there's a problem with some of the
information they've painstakingly entered. Validate
data entered into a field as soon as possible, when
the user moves to the next field, so you know they're
done typing in the current one.

Client-side validation isn't always technically
possible, but you should aim for it wherever you
can because the "round trip" to the server and back
is frustrating if there are errors.

Tell the user to try again before they submit the form

There are lots of techniques for doing this,
including plenty of third-party validation libraries for
popular programming languages and frameworks. In
the bad old days, the user would get a (sometimes
partially-filled) form back after submitting, with errors
marked in red like school homework.

Nowadays, it should be possible to show the
user what they've done wrong (for example, too few
digits for a phone number) and the steps they can
take to rectify it.

Page 167

Chapter 45: Validate Data Entry as Soon as Possible

The same goes for less common inputs like date
pickers—they should include the logic to know that,
for example, a hotel guest can't check out before
they've been checked in. This is a simple bit of logic
that can help you to avoid a whole raft of common
problems.

Don't ever clear the form data just because the
user made a mistake (see #38, Don't Ever Clear
User-Entered Data Unless Specifically Asked To). There
are bonus points for correcting common errors, for
example, the user typing an email address ending
gmail.con could see a suggestion: "Did you mean
gmail.com? Fix it for me!"

Learning points
zz Show the user where they've made mistakes as

soon as possible
zz Don't wait until the user has submitted the form
zz You can't always validate without submitting the

form, but it's a good principle to aim for

#46
IF THE FORM FAILS
VALIDATION, SHOW
THE USER WHICH
FIELD NEEDS THEIR
ATTENTION

Page 170

Chapter 46: If the Form Fails Validation, Show the User Which Field Needs Their Attention

If you really have to validate on the server side and
can't do it on the client side (see #45, Validate Data
Entry as Soon as Possible), then never send a user back
to a form without telling them what to do next, and
never with a generic message such as "there was
an error."

The user will have likely entered several different
bits of data and they'll need to get the context of the
form back into their head again, once it comes back
from server-side validation. The worst way to do this
is by forcing them to scan the whole form again,
looking for what they might have got wrong.

Highlight the problem (or problems) with the
form and show the user where they need to correct
items.

Showing the user exactly where their attention is needed

Sending the user back to an identical form to the
one they just submitted, then expecting them to work
out what went wrong—like some kind of puzzle—is
the world's worst video game.

Page 171

Chapter 46: If the Form Fails Validation, Show the User Which Field Needs Their Attention

Learning points
zz In server-side validation, there's a delay before the

user gets feedback, so help them to remember
the context

zz Show the user exactly which areas need their
attention

zz Avoid generic "something is wrong" messages

#47
BE FORGIVING –
USERS DON'T KNOW
(AND DON'T CARE)
HOW YOU NEED
THE DATA

Page 174

Chapter 47: Be Forgiving – Users Don't Know (and Don't Care) How You Need the Data

The overarching principle of both forms and wider
UX could be summarized as "be forgiving."

Things that users do can often seem strange and
unpredictable, but they probably have really good
reasons:

zz The user who can't save their name because it has
a special character (like an accent or apostrophe)

zz The user who can't enter a phone number because
you're validating for phone number rules of the
wrong locale

zz The user who does (or doesn't) put spaces
between groups of digits in their payment card
number

zz The user who spells their name with an emoji
(this will happen)

Just because your developer set telephone fields
to be 12 digits and 12 digits only, don't inflict this
kind of madness on your poor users.

Your software should be forgiving—it should
allow names to be comprised of multiple names,
with hyphens and apostrophes. It should let users
choose to skip non-mandatory fields. It should allow
phone numbers with and without prefixes, and with
extensions if users wish to enter them. It should
allow users to enter postal codes in all manner of
strange ways, for example, don't force them to enter
(or omit) the space.

Page 175

Chapter 47: Be Forgiving – Users Don't Know (and Don't Care) How You Need the Data

It's likely that some of these steps will create
technical complexity or more work for your developers.
There's no apology for this. Your product is there to
serve the user, not to make life convenient for your
internal development team.

Learning points
zz Give your user flexibility in how they enter data
zz Don't make your technical challenges a problem

for the user
zz Expect the user to do unpredictable things with

your product

#48
PICK THE RIGHT
CONTROL FOR
THE JOB

Page 178

Chapter 48: Pick the Right Control for the Job

UI designers have an extensive palette of controls
and UI elements to choose from, so it's surprising to
see, fairly often, poor choices of controls on forms.

You can enhance the UX of a product considerably
by using the right control for the job. HTML5 has
extensive form controls, supported by all modern
browsers, including color pickers, telephone input,
URL input with validation, and so on.

It's not always the most obvious control that
you're looking for. Here are some examples:

zz Showing users two radio buttons for a yes or no
choice, when a checkbox or toggle switch would
be simpler

zz Overusing drop-down controls when there are
only a few options (it would be better to use
virtually any other control because a drop-down
obscures the available choices from the user)
see #14, Don't Use a Drop-Down Menu If You Only
Have a Few Options

zz "Build your own" UI for color selection when
the HTML color input type is widely supported
and shows a bespoke control suited to the user's
device

Once again, this is an area where a little initial
thought can save your users a lot of frustration.

Page 179

Chapter 48: Pick the Right Control for the Job

Learning Points
zz Consider whether you're using the best UI control

for the job
zz The most commonly-used approach may not be

the best
zz Don't build your own when there are standardized

controls available to use

#49
ALLOW USERS
TO ENTER PHONE
NUMBERS HOWEVER
THEY WISH

Page 182

Chapter 49: Allow Users to Enter Phone Numbers However They Wish

Phone number entry should be as painless as possible
for the user. Don't attempt to validate them, split
them into groups of numbers, apply brackets or any
of the other weird tricks you see all over the web. If
you've tried to use a UK mobile number on a form
that's demanding a European number, then you'll
know the feeling.

My theory is that this sort of design comes from
traditional paper form filling. Designers are tasked
with copying or recreating what was once a paper
form into the company's shiny new web application,
but they take this too literally and users end up with
a horrible experience as a result.

Stop and think whether a phone number is even
necessary for most registration forms. I hate using the
phone. The "Phone" app is my least favorite app on
my phone (I've tried deleting it but it won't let me).
However, I concede that there will be cases where
you absolutely have to collect a phone number.

Page 183

Chapter 49: Allow Users to Enter Phone Numbers However They Wish

Carry out your clever phone number detection
and parsing on the server side and let the user just
simply key in their phone number. You get bonus
marks for using <input type="tel">, which, on
a mobile device, shows the telephone keypad when
the field is tapped—and will show "Autofill" on
modern smartphones—meaning that the user can add
their number with one tap.

The numeric keypad being shown for a "tel" field

Page 184

Chapter 49: Allow Users to Enter Phone Numbers However They Wish

Learning points
zz Don't attempt to validate or parse phone numbers

in the user interface
zz Just let the user key in their number
zz Show the user a numeric keypad on mobile

#50
USE DROP
DOWNS SENSIBLY
FOR DATE ENTRY

Page 186

Chapter 50: Use Drop Downs Sensibly for Date Entry

A user entering a full date (like a date of birth)
should be offered a drop down for the day and
month, then a numeric entry for the year. Day and
month are sufficiently short that a drop down doesn't
feel too cumbersome. It also solves the issue of US
dates having their day and month in the opposite
order to most of Europe.

Don't use a drop down for the year though:
it looks crazy and forcing the elderly to scroll back
to the early 1900s seems very unfair. For mobile,
use responsive design to show mobile users the date
picker, a custom-designed UI on iOS and Android
that makes picking dates a piece of cake.

Let's be real, would you rather build your own
mobile date entry UI or stand on the shoulders
of the designers at Apple and Google, who've done
all the hard work for you?

Page 187

Chapter 50: Use Drop Downs Sensibly for Date Entry

The system-native date picker will also be familiar
to users, reducing cognitive load and giving them one
less thing to learn.

The iOS date picker

The date picker on Android

Learning points
zz Use drop-down selectors for the day and month
zz Use numeric entry for the year
zz Mobile devices should show the system date

picker

#51
CAPTURE THE BARE
MINIMUM WHEN
REQUESTING PAYMENT
CARD DETAILS

Page 190

Chapter 51: Capture the Bare Minimum When Requesting Payment Card Details

The end goal for a lot of sites and apps is getting
a user to pay. It's a cause for celebration: we've made
something or are offering something so good that the
user is happy to spend their hard-earned currency
with us. So, why do we make it so hard for them
to do so?

A credit or debit card number is already an
unwieldy amount of data for a user to enter, so make
it as easy as possible for them:

zz Only collect what you need: card number, expiry
and CV2 code.

zz Allow the user to type the full card number into
one field, but visually split it into groups of four
digits as they enter it. This makes errors easier
to spot but prevents the user having to move
between four separate input fields.

zz If the user hits the spacebar, then remove the
space silently.

Page 191

Chapter 51: Capture the Bare Minimum When Requesting Payment Card Details

zz Include some help text describing where to find
the CV2 or card security code. It's not worth
losing a customer because some people have
different terms for this code.

Stripe's default checkout behavior is pretty much perfect

If you don't need to collect the "valid from"
date, issue number or postal/ZIP code—or 10 other
random things—don't collect them. Every form field
is another thing for the user to do, another bit of
information to find and parse, and another chance
for them to get stuck, change their mind, get bored
or otherwise abandon your payment form.

Page 192

Chapter 51: Capture the Bare Minimum When Requesting Payment Card Details

Only ever collect card details over a HTTPS
(secure) connection. Increasingly, browsers will alert the
user if they're entering information into a non-secure
page. There are services, such as Let's Encrypt
(https://letsencrypt.org) (a free, automated, and open
certificate authority), which allow you to generate
a certificate free of charge.

Learning points
zz Only collect the bare minimum of information

you need to make the transaction
zz Be forgiving: absorb accidental spaces and make

numbers readable
zz Only ever collect card details over a secure

connection

https://letsencrypt.org

#52
MAKE IT EASY FOR
USERS TO ENTER
POSTAL OR ZIP CODES

Page 194

Chapter 52: Make it Easy for Users to Enter Postal or ZIP Codes

Postcodes and ZIP codes vary wildly around the
world. Don't try to guess the format for the user:
simply give them a text entry input field and allow
them to enter their code. You can carry out validation
if you need to on the server side. If you force users
to enter a ZIP code, regardless of where they are in
the world, expect a lot of junk ZIP codes in your
database.

Some of the better forms that I've seen in
recent years include a "live lookup", where entering
a postcode (or part of a postcode) will return a list
of possible address options for the user to tap or
click. Obviously, this reduces the keystrokes and clicks
that the user needs to make to enter their address and
it also reduces error rates by pre-filling fields with
data that has already been sanitized.

If you're dealing with a web page (as opposed
to a native app, for example), then using the
"Autocomplete" attribute on an input element in
HTML will prompt some browsers to offer "Autofill"
on that field:
<input autocomplete="shipping postal-code">

Page 195

Chapter 52: Make it Easy for Users to Enter Postal or ZIP Codes

This will work in Android and iOS browsers,
offering the user the chance to populate their own
postcode in one tap.

Pre-filling the postcode with one tap

Bonus tip: country codes are often found at the
end of a form, so don't let users enter all their data,
then clear it because choosing a country changes the
form's fields.

Page 196

Chapter 52: Make it Easy for Users to Enter Postal or ZIP Codes

Learning points
zz Form entry is a pain for users, so just let them

enter their postcode simply and validate it later
zz Offer a "live lookup" for postcodes to address

conversion, if possible
zz Allow "Autocomplete" in form fields using HTML

#53
DON'T ADD
DECIMAL PLACES
TO CURRENCY INPUT

Page 198

Chapter 53: Don't Add Decimal Places to Currency Input

This is yet another example where keeping it simple
is the best option. Many currency input situations
(sending a bank payment or adding a tip, for example)
require the user to enter a value, which could be
a whole amount ($10) or an arbitrary amount (£5.99).

Products sometimes try to be too helpful by auto-
adding the decimal place or adding ".00" to the end
of the value, which tends to lead to errors. Not the
fun kind of errors either, but the kind where you
bid $1000.00 for some underpants on eBay when you
meant to offer $10.00 for them, maximum.

Allow the user to type the decimal themselves,
but assume a ".00" if they don't.

Pro-tip: After the entry is done, always
present the value back to the user, so they
can hit "confirm" or go back and edit it.

Learning points
zz Don't add decimal places to currency entry, as it

can lead to errors
zz Allow the user to type the cents if they wish, but

assume "0" if they don't
zz Always ask the user to confirm the amount after

entry

#54
MAKE IT PAINLESS
FOR THE USER TO
ADD IMAGES

Page 200

Chapter 54: Make it Painless for the User to Add Images

There are a lot of situations in web and mobile apps
where the user is asked to upload an image. It's done
in a variety of ways, but here are some principles for
getting user input in the form of images:

zz Give the user the choice of picking a file or
taking a picture, which is especially useful on
mobile or tablet, where the request can trigger the
system image picker, which has more functionality
than your app can provide.

zz Consider whether you would like the user to
upload multiple images. If so, allow them to
do this in one go, rather than lots of separate
selections.

zz Give the user "crop" and "rotate" controls when
the image is previewed. It's super useful to be
able to trim and rotate an image with a couple
of clicks, rather than using another tool to do so.

zz Try to accept a wide variety of image formats:
JPEG, PNG and GIF at the very least.

zz Tell the user that the image is uploading and show
them the progress (uploads can be slow).

zz For avatar images, consider using a third-party
service like Gravatar, which should mean a good
proportion of your users won't need to add an
image at all. After all, the best interface is no
interface.

Page 201

Chapter 54: Make it Painless for the User to Add Images

Learning points
zz Use device features for capturing images if they're

available
zz Allow multiple image uploads in one go if you

want to collect more than one image
zz Keep the user informed about the upload progress

#55
USE A "LINEAR"
PROGRESS BAR
IF A TASK WILL
TAKE A DETERMINATE
AMOUNT OF TIME

Page 204

Chapter 55: Use a "Linear" Progress Bar if a Task will Take a Determinate Amount of Time

Despite your iPhone having the number-crunching
power of a late-1990s supercomputer, everyday tasks
still seem to take a maddeningly long time in a lot
of software. Printing, for example: why does it take
so long for the computer to send a document to
a printer? It's as if the printer has to work out how
to be a printer every time. Regardless, it's a great
idea to let users know how long they're going to be
waiting for.

Never show a series of completing progress bars,
for example:

zz Copying: 0...10..50..100%
zz Decompressing: 0..20...60..100%
zz Installing: 0...15...45...80...100%
zz Finishing up: 0...20...60...100%

That should have just been one progress bar:

The perfect progress bar

A progress bar with a start and end, that gradually
fills as the task completes, is the gold standard for
this. There's no ambiguity and the user can get
a good idea of how long this task will take, and that
it's proceeding as planned.

Page 205

Chapter 55: Use a "Linear" Progress Bar if a Task will Take a Determinate Amount of Time

In this case, by the word determinate, I mean that
your software "knows" the number of things it has to
do (or can work it out), and can work through them
while updating on progress. Default to this option
if you can.

Learning points
zz Show a linear progress bar if your software

is able to
zz Show only one progress bar for the whole

operation
zz Give the progress bar a clear start and end

#56
SHOW A "SPINNER"
IF THE TASK WILL TAKE
AN INDETERMINATE
AMOUNT OF TIME

Page 208

Chapter 56: Show a "Spinner" if the Task Will Take an Indeterminate Amount of Time

In this case, by indeterminate, I mean that your
software isn't sure (or has no way of knowing) how
many things it has to do: it just knows that it will
know when it is done.

Showing an animated spinner gives a user less
information than a progress bar, but it at least tells
them that something is happening and their task will
be done when the spinner vanishes.

A spinner. Other styles are available

If something goes wrong, then make the spinner
stop. Your user doesn't know whether this is a "loop
forever" GIF, so they'll just carry on waiting when
nothing is actually happening behind the scenes.
Gmail shows "loading" and then, after some time,
it shows "still loading", which is a nice touch.

A spinner is also great for tasks that are very
short, for example a page reload, where a progress
bar would be overkill.

Page 209

Chapter 56: Show a "Spinner" if the Task Will Take an Indeterminate Amount of Time

Learning points
zz Use a spinner when your product can't reliably

show a progress bar
zz Use animation to indicate that something

is happening
zz Stop or remove the spinner if something goes

wrong

#57
NEVER SHOW AN
ANIMATED, LOOPING
PROGRESS BAR

Page 212

Chapter 57: Never Show an Animated, Looping Progress Bar

Some of the most awful (and hilarious) UI disasters
that I've come across have this particular travesty
in common. An animated (often a GIF) progress
bar which, once it has meandered its way to the
end, restarts back at zero and does it all over again
is common. Think of it as a "linear spinner". If you
really dislike your users, then this is an excellent way
to "troll" them.

Animated progress bars could actually be
a symptom of developers testing things locally
on their computers, rather than on the wider internet.
Everything loads so quickly during local testing that
a developer may never see a progress bar. This is yet
another vote for testing in the real world with real
users (refer to #101, Test with Real Users).

Learning points
zz Don't show a looping progress bar
zz Don't indicate to users that something is about

to complete when it isn't
zz Test your software in real internet conditions, not

just on your computer

#58
SHOW A NUMERIC
PROGRESS INDICATOR
ON THE PROGRESS BAR

Page 214

Chapter 58: Show a Numeric Progress Indicator on the Progress Bar

Show a numeric (percentage) indicator on the progress
bar, but only if there's time to read it.

A progress bar with a numeric indicator

A progress bar and a number that appears for
a fraction of a second is just confusing and adds
to the visual clutter that the user needs to process.
If they're going to be stuck looking at the progress
bar for a few seconds, then a percentage is a nice,
universally-understood way of keeping them updated.

Also, this numeric indicator could be an amount
of time. So, for an update, you can show a certain
amount of minutes remaining. However, a percentage
is more useful for shorter processes. Be careful
because calculating "time remaining" is often a big
technical challenge. It's pretty common to see an
update say "24 minutes remaining" and then see
it complete in the next few seconds. If you're not
confident that you're giving users an accurate time,
then it's better to leave it out and use a percentage
instead.

Page 215

Chapter 58: Show a Numeric Progress Indicator on the Progress Bar

That's it, the captivating progress bar section
is over. Now, if we can all please get progress bars
right over the next few years, I might not need
to write about them again!

Learning points
zz Show a "percentage complete" numeric indicator

on a progress bar, if there's time to read it
zz For long processes, consider showing time

remaining
zz If you can't show an accurate estimate of time

remaining, just revert to a percentage

#59
CONTRAST RATIOS
ARE YOUR FRIENDS

Page 218

Chapter 59: Contrast Ratios Are Your Friends

Way back in 1999, the World Wide Web Consortium
(W3C), the main international standards organization
for the internet, published the catchily-titled "Web
Content Accessibility Guidelines" (or WCAG). They
were revised and updated to "WCAG 2.0" in 2008,
with the guidelines stating that "websites must be
perceivable, operable, understandable, and robust."

The guidelines are extensive and detailed, and go
way beyond the scope of this book, but some key
elements from them are great best-practice guidelines
to incorporate into your UX work.

One great guideline is that on contrast:

1.4.3 Contrast (Minimum): The visual
presentation of text and images of text has
a contrast ratio of at least 4.5:1.

There are some exemptions and caveats around
logos and especially large text, but the "golden rule"
contrast ratio of 4.5:1 is one to live by. See the three
example buttons below. The low-contrast button
would be really hard to use for partially-sighted
people.

Page 219

Chapter 59: Contrast Ratios Are Your Friends

What's more, people with perfect vision would
also find it annoying and difficult to read (especially
on a tiny mobile screen).

How contrast makes a difference

There are automated contrast checkers on the
web, so search for one in your favorite search engine
and give it a whirl on your UI contrast. A decent
contrast ratio will help partially-sighted people, as
well as preventing fully-sighted users from getting
frustrated.

Remember, if the marketing team tells you that
text on controls or in-app copy has to be in a low-
contrast color combination for branding reasons, then
tell them where to shove their brand guide!

Page 220

Chapter 59: Contrast Ratios Are Your Friends

Learning points
zz A contrast ratio of 4.1:1 is an absolute minimum
zz Aim for a contrast ratio of around 7.5:1 for

maximum readability
zz Like many accessibility tweaks, this one benefits

all users, regardless of their ability

#60
IF YOU MUST USE
"FLAT DESIGN" THEN
ADD SOME VISUAL
AFFORDANCES
TO CONTROLS

Page 222

Chapter 60: If You Must Use "Flat Design" then Add Some Visual Affordances to Controls

Minimalism is generally good and reducing clutter and
visual distractions can often help a user to find what
he or she needs more quickly. Minimalism does not,
however, mean making controls so minimal that they
are impossible to use.

The flat design aesthetic (refer to #7, Make
Your Buttons Look Like Buttons) tends to remove
visual affordances, but not to the same extent as the
newly-emerging "web brutalism." Brutalism, inspired
by the brutalist architectural style, is an aesthetic in
product design that deliberately looks unstyled and raw
(Craigslist is a great example).

Outside of being a joke for designers, this level of
minimalism is too imposing and unnecessary and, like
flat design, can degrade discoverability by removing
all visual affordances.

Page 223

Chapter 60: If You Must Use "Flat Design" then Add Some Visual Affordances to Controls

Let's look at some UI in the widely-used Google
Calendar (iOS) app. The strict adherence to flat
design here means that it's very hard to work out
what is tappable and what isn't.

The Google calendar app

It's good that less frequently used controls (like
"email" and "delete") are hidden from most users,
but they're not discoverable: the menu to find them
is a small, unlabeled "ellipsis" menu in the top right.

There's also a problem with consistency. The
"pencil" edit icon is tappable and has a subtle drop
shadow (a visual affordance!), but none of the other
tappable items do.

Page 224

Chapter 60: If You Must Use "Flat Design" then Add Some Visual Affordances to Controls

Compare Google Calendar to a section of the
user interface from the following control panel of
Stripe.com (http://Stripe.com).

Stripe.com's control panel

It strikes a great balance between minimalism and
affordances. It's clean and simple, and here are some
of the reasons why:

zz It's broken down into logical sections
zz The controls are clearly recognizable as tappable
zz An "X icon" is used for Remove, but it is labeled

with some text
zz The Add… button features an ellipsis, indicating

that there's another step to be completed when
it's clicked

http://Stripe.com

Page 225

Chapter 60: If You Must Use "Flat Design" then Add Some Visual Affordances to Controls

It's not perfect (the button styles are a little
inconsistent, for example), but overall it's a better
interface than the Google Calendar. I guarantee that
users will have a better experience with this UI than
with Google's.

Learning points
zz Visual affordances on controls are still vital for

all user interfaces
zz Consistency across your product will help users

to learn your interface more quickly
zz Don't take minimalism too far: find a balance

#61
AVOID AMBIGUOUS
SYMBOLS

Page 228

Chapter 61: Avoid Ambiguous Symbols

This is easier said than done, but there are some
symbols and iconography that are often used and
misused across products. Here are just a couple
of examples from products on the web and mobile,
but there are hundreds more:

zz @: The "at" symbol is a repeat offender in the
context of the control. Does it mean "email",
a web link or something else?

zz : Does this mean "share" or "new window"
or "open additional menu options"? I've seen
it used to represent all of the above, as well as
upside down to mean "go back".

Some things to think about when picking
iconography:

zz Is there a well-used existing icon for this which
can be reused? Users will already know it and you
don't have to redesign it.

zz Is this proposed icon distinct from the others
and memorable?

zz Does this proposed icon conflict with any
established patterns?

Page 229

Chapter 61: Avoid Ambiguous Symbols

By giving your iconography and symbols a bit of
extra thought, you can help to make your interface—
and, therefore, your user's experience—a whole
lot better.

Learning points
zz Choose your icons with care and thought
zz Don't reinvent the wheel: there's probably

an established pattern that you can reuse
zz Icons are like jokes: if you have to explain them,

they've not worked

#62
MAKE LINKS
MAKE SENSE
OUT OF CONTEXT

Page 232

Chapter 62: Make Links Make Sense Out of Context

Q: What's the difference between these two ways
of offering a web link to a user?

zz To download our brochure: click here.
zz You can download our brochure here.

A: The first one is harder for visually impaired
people to use.

Screen-reader software often has a mode where
the user can "skim" the page for clickable links, and
these links need to make sense out of context. In this
case, the first link would be read aloud as "click here",
while the second would be dictated as "download our
brochure"—much more usable.

Let's take another example from an index of
blog posts:

zz Blog post story 1

Read more

or

zz Blog post item 2

Read blog post item 2

In this example, recapping the title in the "read
more" link gives additional context and prevents the
screen reader from simply reading a list of "read
more, read more" over and over.

Page 233

Chapter 62: Make Links Make Sense Out of Context

Bonus: Making your links descriptive can help some
search indexes to make sense of your content.

Learning points
zz Avoid "click here" links
zz Use descriptive links that make sense out of

context
zz This will help with search indexing as well as

accessibility

#63
ADD "SKIP TO
CONTENT" LINKS
ABOVE THE HEADER
AND NAVIGATION

Page 236

Chapter 63: Add "Skip to Content" Links Above the Header and Navigation

As previously mentioned, some users with a visual
impairment will be using screen-reader technology
to read the text elements of your interface aloud.

One problem is that it's easy for these users
to get lost in the mess of links and content on an
especially-busy page. Users need a way to get to the
navigation. For fully-sighted users, the location of the
navigation is a well-accepted pattern, but partially-
sighted users may not have the same "mental model"
of a web page or web app.

Adding a "skip to content" link to the top of your
site (it need only be visible to screen readers) will
allow the user to skip past the navigation effortlessly.
They don't want to have to hear all your menu
options read aloud, over and over, each time a page
is loaded.

Here's the CSS that the W3C recommends using
to position the link off-screen for sighted users:
#skiptocontent {
 height: 1px;
 width: 1px;
 position: absolute;
 overflow: hidden;
 top: -10px;
}

Page 237

Chapter 63: Add "Skip to Content" Links Above the Header and Navigation

Learning points
zz Add a "skip to content" link to the top of your

site
zz Use CSS positioning to hide the link for sighted

users
zz Include this in your site or app templates, so it

appears on every page automatically

#64
DON'T ONLY USE
COLOR TO CONVEY
INFORMATION

Page 240

Chapter 64: Don't Only Use Color to Convey Information

This sounds counterintuitive: making a warning red
or a success alert green is second nature to most
designers. While color can act as a shorthand for
most users, those with color blindness can find
themselves at a disadvantage. Certain types of color
blindness will mean that users can't tell the difference
between a red status blob and a green one.

The best way to approach this is to use color
to convey additional information, and not just use
color alone. This makes the site usable for the vast
majority of people, but not at the expense of a few.
This is why I advise making links underlined (and,
optionally, a different color), not just a different color,
to differentiate them from body copy.

For example, a "status normal" label could show
a green indicator blob, but should never just be the
green blob on its own.

Only one of these interfaces is usable for color-blind people

Page 241

Chapter 64: Don't Only Use Color to Convey Information

Color is a great secondary indicator: a visual
cue that will help people to identify elements
of your product more quickly and get information
simply. This principle is intended to remind you that
not everyone can see colors (there are 27 million
people with some form of color blindness in the US
alone), so it shouldn't be the only way of conveying
a message.

Learning points:
zz Don't use color on its own to convey information
zz Ensure that there are other indicators along with

color
zz Color is still a great secondary source of

information for users

#65
IF YOU TURN
OFF DEVICE ZOOM
WITH A META TAG,
YOU'RE EVIL

Page 244

Chapter 65: If You Turn Off Device Zoom with a Meta Tag, You're Evil

<meta name="viewport" content="width=device-
width, initial-scale=1.0, maximum-scale=1.0, user-
scalable=no" />

Adding this meta tag to the head of an HTML page
will prevent the user from scaling the page, either
using their browser controls or with "pinch-to-zoom"
on a touchscreen device. This also prevents users with
vision difficulties from scaling the page.

Although rare, it's still seen in the wild. Designers
typically do this because:

zz They haven't made their designs work responsively
or don't know how to

zz They don't understand the implications for
accessibility

zz They are stupid

Don't be these designers. Let your users choose
how to view and manipulate your interfaces. Away
from web pages, offer these scaling controls in
desktop and native mobile software. iOS and Android
both have built-in support for accessibility features
that you can hook into and, as a result, respect the
user's preferences for type size and contrast.

Page 245

Chapter 65: If You Turn Off Device Zoom with a Meta Tag, You're Evil

A designer can't ever know how a user will want
to view their content, so don't assume. Not being able
to design a "pixel-perfect" outcome for every device
size means that pulling these kinds of tricks (disabling
scale, for example) is simply shooting yourself in
the foot. As with most adjustments for accessibility,
responsive content creates a better experience for all
users, regardless of ability.

Learning points
zz Let go of pixel-perfect design and accept that

users will want to view your products on their
terms

zz Use device-native accessibility features where
you can

zz Test your product's interfaces on multiple device
sizes and with assistive technologies

#66
GIVE NAVIGATION
ELEMENTS A LOGICAL
TAB ORDER

Page 248

Chapter 66: Give Navigation Elements a Logical Tab Order

Try an experiment: head to a website in your browser
and start pressing the Tab key. You should notice the
"focus" (usually a colored rectangle or shaded area)
move from item to item across the site.

This is one of the ways that users who are
partially sighted, or have motion difficulties, use
web pages. These users rely on interface designers
to use common sense in the tab order that they
assign to items. On some websites and web apps
this is horrible, while on some it's clearly been well
thought through.

Filling in a form is often extra frustrating when
tapping the Tab key takes your focus to a strange
part of the page. It's unlikely that you'll be writing
code yourself, but you may wish to tell your frontend
developers that they can specify the order that items
are selected in using the tabindex attribute:
<input type="text" name="field1" tabindex=1 />
<input type="text" name="field2" tabindex=2 />

For navigation and menus, it's important that
you check through them and ensure that they are
in a logical order. Your customers using assistive
technologies will thank you.

Page 249

Chapter 66: Give Navigation Elements a Logical Tab Order

Learning points
zz Ensure that tabbing around your UI takes the

focus in a sensible direction
zz Although this is especial ly important for

accessibility, all users will benefit from forms
that are easier to move around

zz Test your designs with assistive technologies

#67
WRITE CLEAR LABELS
FOR CONTROLS

Page 252

Chapter 67: Write Clear Labels for Controls

Another small change you can make, which will make
the world of difference to your users using assistive
technologies, is writing clear labels:

Bad:

Good:

Pre-f i l l ing your f ie ld with "placeholder"
(or "watermark") text may look tidy, but it's not
supported in all browsers, and disappears when the
focus moves to the input field.

Page 253

Chapter 67: Write Clear Labels for Controls

You can, however, include both, which allows
the field to be identified and gives some assistance
to users as to the kind of information that is needed
for that input.

An input with a clear label and a helpful watermark

I know I've tapped a field many times, planning
to type some information in, only to stop and think,
"Wait, what was this field for?" Yet again, this is an
example of improving accessibility (screen readers use
labels to make forms usable), while also improving
the overall experience for your whole audience.

Learning points
zz Screen readers rely on labels for partially-sighted

users
zz Field labels benefit all users
zz Placeholder labels disappear or are obscured when

the user types in the field

#68
LET USERS TURN
OFF SPECIFIC
NOTIFICATIONS

Page 256

Chapter 68: Let Users Turn off Specific Notifications

Notifications, whether on desktop or, more commonly,
mobile, are a great way to keep users informed of
state changes while the app is closed or in the
background.

It's worth thinking through carefully how users
can customize or disable certain types of notifications
(or all of them). The events that each user considers
important, or notification-worthy, will vary and may
even change over time.

A notification

A user probably doesn't want an audio notification
every time someone likes their Instagram selfie.
Perhaps they do want a notification of a direct
message because they get them less frequently.

The user's device or browser will allow them
to disable notifications entirely for your app, which
they will most likely do if what they're seeing isn't
fine-tuned enough. It's extra technical work to allow
a user this kind of fine-grained control, but allowing
them to set up notifications how they want them is
a serious advantage over your competitors' products.

Page 257

Chapter 68: Let Users Turn off Specific Notifications

There's an approach, particularly in mobile
products, that seems to advocate bombarding users
with as many push notifications as possible, to
encourage repeat usage. In my experience, this does
more harm than good to your product in terms
of UX and retention.

An added bonus is that by allowing a user fine-
grained control over these notifications, they are going
to be happier with your app's "noise level" and will
be less likely to disable notifications at a system level.

Learning points
zz Allow users fine-grained control over notifications
zz Don't bombard users with too many messages
zz Remember that users can simply disable all

notifications for your product at a system level

#69
MAKE TAPPABLE
AREAS FINGER-SIZED

Page 260

Chapter 69: Make Tappable Areas Finger-Sized

If you think your design will be used by touch,
then your users' fingers are the tool that they'll use.
Given that obvious statement, it's surprising to see
UI controls in touch interfaces that are clearly way
too small for users to poke at easily with their digits.

As a guide, your smartphone screen is (roughly)
five fingers wide and 10 fingers high, so that's about
the limit of the controls that can be comfortably used
on such a display. If you were to try to fit more than
five items horizontally across the display, they would
be too small to be comfortably used.

You'll need to experiment to find the right control
size, but if you're using native control elements
(see #34, Use Device-Native Input Features Where Possible),
that research has been done for you: they're already
the right size.

Make controls a size that humans can operate with their fingers

If you're building your own touchscreen controls,
use the human finger size as a guide. Trying to grab
a 1 or 2 pixel-sized control with a finger is needlessly
difficult and will frustrate users no end.

Page 261

Chapter 69: Make Tappable Areas Finger-Sized

Don't make elements adjacent if some users
will be accessing your product via touch. Padding
between buttons prevents the wrong button from
being touched accidentally. 2 mm is a good guide
for padding, in however many pixels that means for
your display.

Learning points
zz Think about the size of human fingers when

designing touch interfaces
zz Don't make touch controls too small for users to

use comfortably
zz Add padding between control elements to prevent

accidental mis-taps

#70
A USER'S JOURNEY
SHOULD HAVE
A BEGINNING,
MIDDLE, AND END

Page 264

Chapter 70: A User's Journey Should Have a Beginning, Middle, and End

The user's journey can be thought of in a broad or
narrow way: it can be their journey through the whole
product—for a dating app that could be from signing
up to a first date—or it could be a fine-grained
journey, for example, into a particular settings menu
to change an option.

As the user goes through their "jobs to be done",
they make a great many small journeys. In every case,
the user should know that they have begun a journey,
that that journey will end at some point, and when
it has ended.

The classic anti-pattern here is users thinking,
"Have I saved these settings or not?" On macOS,
changing the settings and then closing the window
saves the settings, while on (older) Windows
applications, the user must press "save". In some
more obscure systems, the user must click apply and
then save.

Page 265

Chapter 70: A User's Journey Should Have a Beginning, Middle, and End

The user is never sure whether this journey
(to change a setting) has ended or not, so make
it clear to them.

Making an edit to a Google doc lets you know that the change has been saved

MailChimp gives you a high five from a chimp so you're sure it's worked

Page 266

Chapter 70: A User's Journey Should Have a Beginning, Middle, and End

Keeping users updated with the right amount of
clear communication is not an easy task—and every
product is different—but it's worth testing your
journeys to ensure that these signposts are visible
along the way.

Learning points
zz It can help to think of user tasks and journeys

as needing signposts along the way
zz Keep the user informed as to when they've

finished doing the task they're trying to do
zz Some examples of end-of-journey signposts

include "message sent", "changes saved", and
"link posted"

#71
THE USER SHOULD
ALWAYS KNOW AT
WHAT STAGE THEY
ARE IN ANY GIVEN
JOURNEY

Page 268

Chapter 71: The User Should Always Know at What Stage They Are in Any Given Journey

Some of the worst experiences in digital products
come from not adhering to this principle. For
example, an item that hasn't been ordered because
the user didn't click confirm, or the user who simply
can't find parts of the product because they're buried
too deeply, with no affordances.

Most users will approach your product with
an incomplete (or non-existent) conceptual model
of how it functions. You need to expose some of this
to the user, so they can understand how to use the
product.

Although the user will not consciously "know"
what stage they're at, at all times they should at least
have a general sense of it and you can deliver that
experience with some simple cues.

Much like landmarks in the real world, your
product should include visually different areas that
serve as landmarks in the product. The home screen
should look different to the settings screen, for
example. Although it sounds obvious, making screens
look visually distinct will help the user to think,
"I'm back at the home page." This contributes to an
overall feeling of control for the user, reinforcing
their mental model.

Page 269

Chapter 71: The User Should Always Know at What Stage They Are in Any Given Journey

Some of the ways you can expose the user's stage
in a journey include:

zz A segmented progress indicator
zz A "breadcrumb" control (see #72, Use Breadcrumb

Navigation)
zz An indicator that shows their work hasn't (or has)

been saved
zz With words—explain to the user what they've

done and what comes next

Stop making users feel disorientated: give them
some cues—visual or otherwise—to help them to feel
their place in each journey.

Learning points
zz Provide visual cues that serve as landmarks in the

product
zz Tell the user clearly what stage they're at in every

journey
zz Give the user controls that let them move between

stages

#72
USE BREADCRUMB
NAVIGATION

Page 272

Chapter 72: Use Breadcrumb Navigation

The breadcrumb is not the sexiest of UI components,
but it's a long-standing, tried-and-tested control that
your users will turn to again and again.

Home > Products > Apparel > Hoodies

Websites and apps on the desktop and tablet
(and often mobile) can fit a small and unobtrusive
breadcrumb into their UI with ease. They are
almost never misunderstood by users in testing and
real-world use.

The breadcrumb allows your user to see his
or her position in the system and easily return
to a previous level of the hierarchy. What's more,
by displaying the path the user took to get to their
current location, breadcrumb navigation helps the
user to form a better mental model of the layout
of the product.

Increasingly, in the world of single-page JavaScript
apps, we're seeing breadcrumbs overlooked in the
design phase, perhaps because they're seen as boring
(they're one of the earliest inventions of web UI).

Overlooking breadcrumb navigation is a huge own
goal for your product's usability. Breadcrumbs also
remove the need for a back button in your product,
which should always be avoided, as it replicates
existing browser functionality in a non-standard,
site-by-site way.

Page 273

Chapter 72: Use Breadcrumb Navigation

It's vital to remember that your job as a UX
professional is not to follow trends and remove
breadcrumbs just because the control is seen by some
as "old school". Your job is to improve usability and
this is a great way of doing it with very little screen
space and at no detriment to users who overlook it.

Learning points
zz Use breadcrumb navigation to help your user to

both move around and understand your product
zz Consider whether the breadcrumb is required on

mobile—it might not always be needed
zz Breadcrumbs are well understood by a wide

audience of users

#73
IF THE USER IS ON AN
OPTIONAL JOURNEY,
GIVE THEM A CONTROL
TO "SKIP THIS"

Page 276

Chapter 73: If the User is on an Optional Journey, Give Them a Control to "Skip This"

Not all journeys are linear and not all steps along
a journey are necessary. It's a very frustrating
experience to be "trapped" in a digital product—
forced to complete a journey or task you know you
need to skip but with no way out.

This principle is simple—allow your user to "skip
this" any time it's possible to do so. The archetypal
example of this is during an "onboarding" wizard
where, if it's not actually the first time you've used
the product, being forced to "learn" things you
already know is simply infuriating.

The team messaging app Slack handles this well:

Slack asks if it's "Not your first Slack team?"

Page 277

Chapter 73: If the User is on an Optional Journey, Give Them a Control to "Skip This"

The Not your first Slack team? text at the
bottom of the view could be bigger and clearer, but
it's there and most users will find it easily enough
without going through the tutorial for the umpteenth
time.

I do wonder why the "skip" text is so small in this
example, but it's likely that Slack has used analytics
to work out the proportion of visitors who are first-
time versus returning users. This is a great example
of how you should use metrics from your product
to inform the design decisions you make.

Learning points
zz Allow users to skip optional parts of journeys
zz Don't trap users in non-essential parts of your

product
zz Use metrics from analytics to inform your design

decisions

#74
USERS DON'T
CARE ABOUT
YOUR COMPANY

Page 280

Chapter 74: Users Don't Care About Your Company

There's a running joke in the HBO series Silicon
Valley about how every tech company wants to make
the world a better place. The show's main antagonist
Gavin Belson goes so far as to say, "I don't want to live
in a world where someone else makes the world
a better place better than we do."

Too many products labor the point: telling their
users about their mission or vision, which is about
how they're trying to change the world. Please don't
do this because users simply don't care. Products
are useful for what they let users do. This pattern
of too much information is a symptom of a lack
of objectivity.

If a user has installed your dating app, for
example, the chances are that they have some clear
goals in mind: some basic "jobs to be done" that
involve setting up a profile and meeting people.
They don't want a multi-screen onboarding wizard
that tells them how your company "brings people
together", complete with some stock photos of
couples on beaches, holding hands.

When Google launched, it attracted users with its
simple UI and high-quality search results.

Page 281

Chapter 74: Users Don't Care About Your Company

The UI looked like this:

Old-school Google

Google had no "brand" to speak of, a pretty
ugly logo, and no real corporate vision or mission
statement. Google did have a killer feature: better
search result relevance than all the competitors, which
made it the winner.

As a UX professional, you have to "play nice"
with other teams across the business, but this is
one example where championing simplicity over
complexity can really improve the experience for
users. Once again, objectivity is the most important
skill for a UX professional. Put yourself in your
users' shoes.

Page 282

Chapter 74: Users Don't Care About Your Company

Learning points
zz Don't overdo the corporate vision in your product
zz Users care about what your product lets them do,

not what it says it does
zz Strive for objectivity in your work

#75
FOLLOW THE STANDARD
E-COMMERCE PATTERN

Page 284

Chapter 75: Follow the Standard E-Commerce Pattern

If you're selling items online—physical goods or digital
items—then, like it or not, you're in the world of
e-Commerce. The word e-Commerce seems hopelessly
outdated, but it's the best word we've got to mean
"selling things online through a website or app."

Now, because e-Commerce generates revenue for
businesses in a very direct way, it was one of the first
areas of online experience to really get deep focus
and attention from UX professionals. Even marginal
gains could increase revenue by significant volumes,
so it was worth putting in the effort of user testing
and A/B trials.

The "e-Commerce pattern" we've arrived at from
the past 20 years of the consumer web is both
well-refined and well-understood by users. Getting
a customer through a purchase funnel is difficult,
which means that it has to be as frictionless as
possible, so make everything as familiar as possible.

It goes a little something like this:

zz Products: Products are listed in categories, with
attributes like price, size, color, pattern, and so
on. Users can search and sort these products
by their attributes. Viewing a product shows
controls to adjust the size, color, and so on—if
these options are available—as well as a quantity
selector and an add to basket button, which adds
the quantity selected to the basket. Depending on
the type of item, the user may be prompted to go
straight to the checkout (if they're only expected
to buy one thing).

Page 285

Chapter 75: Follow the Standard E-Commerce Pattern

zz The basket: The basket or cart shows the user
the items and the quantity they've selected. From
there, they can modify quantities, remove items,
clear the basket or proceed to checkout.

zz The checkout: The user is shown the total
and asked to enter personal details like delivery
address and payment information. If they have an
account, they can optionally sign in at this stage
(to avoid entering details over and over), but you
should allow "guest checkout" where possible.

That's all there is to it! This is the tried-and-tested
pattern that's sold billions of items over the years.
You'd be crazy to mess with it.

Learning points
zz Every way that you can reduce friction in the

purchasing funnel will increase conversions
zz Users expect your store to work like every other

store they've used
zz Follow the pattern of products, a shopping basket,

and a checkout

#76
SHOW AN INDICATOR
IN THE TITLE BAR IF
THE USER'S WORK
IS UNSAVED

Page 288

Chapter 76: Show an Indicator in the Title Bar if the User's Work is Unsaved

If possible, your app should be "autosaving" the user's
work, but there are, of course, cases where this needs
to be a user-initiated action (for example, in a creative
application where saving could be destructive).

A great way of showing the user that their work
is unsaved is by displaying a visual indicator in the
title bar of the app. This could be a bullet or could
even explicitly say "not saved", if space allows.

At a glance, the user can tell if they need to
quickly hit cmd + S (or Ctrl + S) to save where they're
at or if they're just experimenting, they will know that
they haven't saved.

A big part of this is about respecting the time and
effort that the user has put into using your product:
entering data, preparing a profile, or bio, and so on.
They deserve to be shown the state that their work
is in and not have to guess or remember whether it's
saved or not.

Learning points
zz Show the user whether their work has been saved

or not
zz Consider whether autosaving a user's work is

helpful or not for your product
zz Show your user that you respect the time and

effort they've put into using your product

#77
DON'T NAG YOUR
USERS INTO RATING
YOUR APP

Page 290

Chapter 77: Don't Nag Your Users into Rating Your App

Your users probably come to your product for a wide
range of reasons. Perhaps it makes their life easier or
passes some time while they are on the bus or allows
them to do something cool that they could never
have done before.

Your users didn't come to your product to see
this:

Nobody cares

This is the "rate this app" nag window that
appears at the worst possible time.

Page 291

Chapter 77: Don't Nag Your Users into Rating Your App

As app stores became the huge industry that they
are today, app developers and software publishers
quickly learned that ratings are an essential part of
the mix of signals that make their app rank higher
in search results. Discoverability has historically been
a problem on app stores and publishers will do
anything they can to "game" the rankings and appear
more prominently.

Your poor user is stuck in the middle, being
constantly asked to rate apps. Another level
of annoyance is a dark pattern of giving users a "do
you like this app?" prompt, which then only shows the
rate dialog if the user said "yes.

If a user really cares about your product, they'll
write a positive or negative review, so including a link
somewhere is fine. This full-screen nag window
is designed to serve only the needs of your app and
your organization, not the user. Please don't use them.

Learning points
zz Don't get in the way of your user using the app
zz Don't nag them into reviewing or rating your app
zz Think about your user's needs ahead of the

organization's needs

#78
DON'T USE A VANITY
SPLASH SCREEN

Page 294

Chapter 78: Don't Use a Vanity Splash Screen

The splash screen—the full-screen graphic that
appears when your user opens your iOS or Android
app—is a great place for your company logo, brand
messaging, or corporate vision statement, right?

No. Do not do this.

Users do not care about your corporate vision
statement (and how you're making the world a better
place)—they just want to open the app to do whatever
it is the app does.

Instead, look at the first screen of your app and
offer a splash screen that echoes this layout, but
without content. Users will feel like the app is loading
quicker if they see the expected interface and it then
transitions into the "real" interface.

Load the UI quickly, and if that means some
user interactions aren't ready yet, only show the user
a spinner if they click them. For example, in a word
processor, let them start typing as soon as the app
opens and load in the pretty "add a chart" dialog
later, if the user clicks it. If there is a need for
a dedicated login screen before the user sees anything
else, some of this branding can be done there.

Learning points
zz Don't show the user company information on

a splash screen
zz Help the user get into your product as quickly

as possible
zz Put the user's needs first, not your corporation's

needs

#79
MAKE YOUR
FAVICON
DISTINCTIVE

Page 296

Chapter 79: Make Your Favicon Distinctive

A favicon, app icon or "apple-touch-icon"—whatever
you call it—is an icon you may well have forgotten
to add to your web app. It serves a useful purpose
beyond branding.

Users with lots of tabs open, lots of apps in their
start menu, or lots of apps in a folder on their phone,
will appreciate being able to find yours quickly.

Some favicons

A bright, bold icon or letter is usually sufficient,
but test it at 16 pixels in size to see that it's legible.
Use transparency well, unless your icon actually is
a square—nobody wants an ugly white square in
their tab bar.

Page 297

Chapter 79: Make Your Favicon Distinctive

If users can see your app instantly and switch to
it, you'll be saving thousands of hours of people's
time cumulatively. Good job!

Learning points
zz Make your favicon clear and distinctive
zz Users use favicons to identify tabs, favorites, and

more
zz Favicons can be displayed as small as 16 pixels,

so check them at that size

#80
ADD A "CREATE
FROM EXISTING" FLOW

Page 300

Chapter 80: Add a "Create from Existing" Flow

An often over looked f low in many CRUD
(stands for create, read, update, and delete. It refers
to the standard set of actions that a user may want
to perform on a set of database records. This can
be users, customers, products, orders or just about
anything else—(CRUD apps) (https://en.wikipedia.
org/wiki/Create,_read,_update_and_delete)) apps is
the "create from existing" flow. When given a list of
items that they have meticulously created, this simple
flow is a massive time saver and productivity boost
for the user.

Selecting "create from existing," or "duplicate and
edit," or even "duplicate," should make the product
behave something like this:

zz The user clicks "duplicate and edit"
zz The system copies the item, giving it a new ID
zz The user is presented with the edit view, but

with a new name (perhaps with "copy" appended
to the original title)

zz The fields are pre-filled with the data from the
original item

zz The user can change as much or as little as they
wish and click "save"

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Page 301

Chapter 80: Add a "Create from Existing" Flow

This flow is useful anywhere that a user is adding
items or maintaining a list of items. It's fairly typical
for business-to-business applications (for example,
customer records, orders, and so on) to be comprised
of a lot of detailed records. The flow also has
a place in consumer-focused apps—duplicating a slide
in a presentation tool, then editing the contents,
is a well-used pattern.

Learning points
zz Allow users to create a copy of an existing item

in the system
zz Don't force them to re-enter the same details

every time
zz Consider how this pattern can be applied to

consumer products too

#81
MAKE IT EASY FOR
USERS TO PAY YOU

Page 304

Chapter 81: Make it Easy for Users to Pay You

The routes by which products are paid for are
many and varied, but there is often the need for
a product to ask a user to upgrade and enter some
payment details.

Time and again, these interactions fall short of
top-quality usability. Be they complex credit card
forms, asking for too much information on lengthy
order forms, or unclear pricing plan details, it's
a massive missed opportunity.

To some extent, this is a solved problem in mobile
apps—both iOS and Android include extensive
support for in-app purchases and subscriptions. The
user likely has their payment details saved and it's
often a one-tap action to make a purchase.

The Shopify checkout experience is well-tested and almost perfect

Page 305

Chapter 81: Make it Easy for Users to Pay You

Out on the web, however, it's a different story.
Although popular online stores like Shopify have
helped to standardize this to some extent, it's often
far too confusing and over-complicated in many
products.

First up, there's pricing pages. Many pricing pages
make it hard for the user to understand the various
plans, subscriptions and add-on bundles. That's if the
site even has a pricing page. Try to apply general UX
principles to pricing pages:

zz Overly long lists of features and benefits are hard
to parse in the user's mind, so keep them short

zz Make the "buy" button obvious with visual
affordances

zz Don't reinvent a weird and wonderful pricing
structure—users spend the majority of their time
on other products, not yours, so give users what
they are familiar with

Basically, the principles in the rest of this book
should be applied in particular to pricing pages.

Next, let's look at order forms. Make them simple,
don't ask for unnecessary information, and give the
user control over what they're buying (the ability to
edit quantities and fine-tune their order).

Page 306

Chapter 81: Make it Easy for Users to Pay You

Finally, make your payment form usable (there are
principles on this elsewhere in this book). The user
flow of learning about pricing, ordering a product
or service, and paying, should be treated as one of
your most important features. It's essential to your
commercial survival.

Your user loves your product so much that they
want to pay you, so make it as easy as possible and
test this flow regularly.

Learning points
zz Make payment and ordering pages as easy to use

as possible
zz Don't hide your pricing page away, and make it

simple and clear
zz Test your payment flow regularly

#82
CATEGORIZE
SEARCH RESULTS
INTO SECTIONS

Page 308

Chapter 82: Categorize Search Results into Sections

Google is so good at ranking search results that users
have come to expect this level of quality from all
their search experiences. Unfortunately, the "out-of-
the-box" site search on many modern web platforms
is a little lacking. You will need to work hard on your
product, and consider the whole search experience
deeply, to deliver the kind of quality your users
expect.

Don't return all the search results for a term
in one huge list:

Cat spoon

Cat bed

Cat t-shirt

Cat food 500g

Cat food 1kg

Instead, split the results into sections—shorter
lists help users to parse information more quickly, and
they can skip to the section that's relevant to them:

Pet supplies (3) Apparel (1) Homeware (1)
Cat food 500g Cat t-shirt Cat spoon
Cat food 1kg
Cat bed

Page 309

Chapter 82: Categorize Search Results into Sections

Show the user the number of items in each list,
so they can decide whether clicking through to an
especially long list is worth their time. As well as the
benefit of saving your user time scanning the list,
the categorization of results allows the user to filter
by category, skipping straight to the most relevant
section.

Split those search results up!

Learning points:
zz Split search results into relevant categories
zz Show the number of results in each category
zz Aim to offer the user the same search quality

they're used to elsewhere

#83
YOUR USERS PROBABLY
DON'T UNDERSTAND
THE FILE SYSTEM

Page 312

Chapter 83: Your Users Probably Don't Understand the File System

The file system of your computer is the complex
tree of many, many thousands of folders and files
that make up the operating system—all your apps
and their resources, and all your documents, images,
and music files. Your users likely don't understand
this—nor should they have to.

I've witnessed multiple people, in user tests, who
use Microsoft Word as the primary way to find and
retrieve information from their computer or network.
They'll open Word and use the "open" command
as a way to browse around their documents. If they
come across an image, they'll open it into a Word
document. If they want to send the image, they'll
email a Word document with the image in. This
probably sounds insane to most computer-literate
people.

Of course, this makes perfect sense to users who
mostly write and manage Word documents. They
don't have any concept of the computer's file system,
nor should they need to. These people aren't stupid—
they just don't understand how files are stored on
their computer.

When the iPad (and later, all tablets) rose to
dominance as the "computer for people who don't
need a computer," that was in part because of the
fact that it obfuscated the file system from the user.
On an iPad, there was no way to see the files: you
had apps and documents within those apps. There
was no way to accidentally delete an important system
file and break the iPad.

Page 313

Chapter 83: Your Users Probably Don't Understand the File System

In later releases, we have iCloud storage, which
does complicate things a little, but the overall principle
still holds. Open an app and your documents for that
app are in there. There's no overall file system and
this is a huge win for usability.

The point of this principle is to ask you to think
about users' mental models of your products and how
you store their information. When a user approaches
your product fresh, they have to form a mental model
of how it saves and retrieves their information.
Does it save their files in the app? Do they need to
download their work? If they start a task on their
phone, can they continue it on their desktop? Make
this clear to people.

There's no hard-and-fast rule for achieving this,
save for following the other 100 principles in this
book.

Learning points
zz Users don't and shouldn't have to understand the

file system of their device
zz Make it clear to users how and where their work

is saved
zz Use this principle to consider what complexity

you can helpfully hide from your users to improve
their experience

#84
SHOW, DON'T TELL

Page 316

Chapter 84: Show, Don’t Tell

The expression "show, don't tell" comes from
screenwri t ing and f ict ion. Often at tr ibuted
to playwright Anton Chekhov, the technique is
intended to allow the reader to experience the story
through action, words, senses and feelings, rather
than through the author's exposition and description.

Show the viewer (or user) the situation and
let them work out how they feel. It's also a great
mantra to repeat to yourself if you're working on
the experience of onboarding, feature guides, or
other tuition—showing users how to use your product
is always better than telling them.

The first reason for this is that users don't read text.
Really, they don't. Time and again, in user test after
user test, I've witnessed this with my own eyes—users
simply don't read onscreen text. You have to show
them how to use the product, not write a description
using words.

Onscreen tips are a good starting point. The tips
should be easily dismissible for repeat users (perhaps
this isn't their first installation of this app), but
present for new users. These tips can highlight areas
of the app that allow the user to get started. Once
they've been shown the key areas of the interface, you
can leave them alone to discover more for themselves.

Page 317

Chapter 84: Show, Don’t Tell

A video demo is best used for more complicated
or highly specialized products. It's more intrusive and
laborious to sit through, so please allow your veteran
returning users to skip it. The benefits, of course,
are more detailed and specific instructions on how to
operate more complicated UI. This technique is used
to great effect in professional software like video
editors, graphics tools, and music software. Consumer
products shouldn't need this.

A final way to make your "show, don't tell"
approach more effective is to build upon established
products (see #95, Build Upon Established Metaphors –
It's Not Stealing). The chances are that your user has
seen and experienced products like yours, so they can
apply this experience to your product and be off to
a flying start in no time.

Learning points
zz Users seldom read text, so show them what

you mean
zz Video demos are great for complex software

and UI
zz Allow returning users to skip these demos

#85
BE CONSISTENT
WITH TERMINOLOGY

Page 320

Chapter 85: Be Consistent with Terminology

The words (or copy) that you write in your product
have a dual purpose. The first is the most obvious:
they label items and views and tell the user which
elements are which.

The second is less obvious, but more important:
the words you use become a very precise and
descriptive language for your product. Understanding
and parsing this language is essential to a user forming
a mental model of how your product works.

If you call your e-commerce shopping cart
a "cart", then call it "cart" everywhere.

If you call your user's profile page "profile", then
call it "profile" everywhere.

If you call your user's email settings "email
settings", then call them "email settings" everywhere.

Mix these up and it will take your user longer
to ponder the inconsistent terms and work out what
you mean.

Learning points:
zz Use consistent terms across your product
zz Don't just label things as you go—build

a consistent language for your product
zz Help users to form a mental model more quickly

with consistent copy

#86
USE "SIGN IN"
AND "SIGN OUT",
NOT "LOG IN"
AND "LOG OUT"

Page 322

Chapter 86: Use "Sign in" and "Sign out", Not "Log in" and "Log out"

Everyone has signed in to attend a meeting or visit
a doctor or dentist. Signing in is something that
people do in the real world. Nobody alive today
has ever "logged in" in the real world. The term
comes from the ship's log, where the sailor would
log in their times and the distance travelled that day.
It's highly unlikely that your users are 18th century
seafarers!

Despite this, it's pretty common to see "log on"
(or even worse: "logon") in software, and especially
in business-to-business software that's been designed
by developers.

For reasons of familiarity, always use "sign in"
and "sign out" in your product consistently: they
relate back to the real world. Unless your product is
a mobile app for time-travelling pirates, of course.

Learning points
zz Use "sign in" and "sign out" in your product
zz Relate tasks like this to real-world situations

for familiarity
zz In particular, try to avoid the dreaded "logon"

#87
"SIGN UP" MAKES
MORE SENSE THAN
"REGISTER"

Page 324

Chapter 87: "Sign up" Makes More Sense Than "Register"

"Sign up" and "join" feel more human and friendly
than "register", which, to me, feels like something
the user is being forced to do. Most of the time, the
user doesn't want to sign up to yet another product—
it's a frustrating extra step, another password to
remember and another load of emails that they're
going to receive.

Of course, there are a lot of reasons why the user
needs to make an account, but don't call it "register": it
feels unfriendly and "sign up" goes hand in hand with
"sign in", which I recommend instead of "log in"
(see #86, Use "Sign in" and "Sign out", Not "Log in"
and "Log out").

Friendly copy and clear control terms make this example highly usable

Combining the Sign up control with some well-
written messaging can really help the app to feel
more friendly and useful. In the preceding example,
we're recapping the benefits of creating an account
to inform a user why they may want to sign up.

Learning points
zz Use "sign up" or "join" instead of "register"
zz Tell the user the benefits of creating an account
zz Be consistent across in-app copy and control

labels

#88
USE "FORGOT
PASSWORD" OR
"FORGOTTEN YOUR
PASSWORD", NOT
SOMETHING OBSCURE

Page 326

Chapter 88: Use "Forgot Password" or "Forgotten Your Password", Not Something Obscure

Password resets are a frequently-used part of the
sign-in experience. Users will make mistakes and,
as UX professionals, it's our job to help them out
as best we can.

When it comes to passwords, unless you're using
a password manager, you've:

zz Got a password that's way too easy to remember
and guess, or

zz Forgotten your password

Allowing users to reset their password with
an email or text message is a useful pattern, and it's
so well-known that it should be standardized by now.

Even so, there are plenty of examples around the
web and in mobile apps where unusual terminology
or UI makes it unnecessarily hard to reset a password
and get back into your account.

Call the control "forgot password" and not "reset
your password", "can't access your account?", or "get
a reset link." Most users won't necessarily understand
that this is the route for their most common use case:
they've forgotten their password.

If they've already entered their email address or
username, pre-fill the "forgot password" form with
that email or username—don't make them enter it all
over again.

Page 327

Chapter 88: Use "Forgot Password" or "Forgotten Your Password", Not Something Obscure

They should get (in their email or by SMS)
a link that:

zz Takes them to a page to set a new password
zz Doesn't expire after one click (users double-click

things frequently!)
zz Does expire after a sensible time period
zz Expires when the password has been successfully

reset

Finally, consider allowing longer-lived sessions
on your product. Despite some advice, not signing
people out after a short period of time can actually
improve security.

Once the user has signed in, their cookie or
session token is stored securely in the browser or
mobile device. If the device is lost or stolen, they
likely have a PIN code or password on the device.

Automatically signing people out after a short
time (30 minutes for an "enterprise app" or a couple
of days for a mobile app) is bad: it means the user
has to sign in more frequently.

This repeated signing in creates more hassle
for them, a poorer experience and, as a result, they
choose an easier password, making their account less
secure.

Page 328

Chapter 88: Use "Forgot Password" or "Forgotten Your Password", Not Something Obscure

Learning points
zz Use "forgotten password" so the user knows that

this is the function to solve that problem
zz If the user has already entered their username,

pre-fill it and don't ask for it again
zz Consider allowing longer-lived sign-in sessions

on your product

#89
WRITE LIKE
A HUMAN BEING

Page 330

Chapter 89: Write Like a Human Being

Too often, terminology in software is written from
a systems-oriented or organization-centric point
of view. We often see menu options like "edit
customer" or "create new customer", but stop and
think about this for a second—customers are people
and we don't create them. The first option doesn't
actually edit a customer and the second doesn't create
a new customer.

For the developer, customers are just database
records, so of course it makes sense to edit them
and create new ones, but for the user, these options
should be better named: "edit a customer's details"
and "add a new customer".

This principle is best achieved through objectivity
and empathy. In other words, being able to step
outside of your view of a product and see it through
a customer's eyes. You must take this step to build
usable software and it's worth the effort.

The words that you use for in-product copy, for
menu controls and even for marketing materials, have
power and weight: you can use them to welcome
or alienate people, to set them on the right path
or to confuse and bewilder them. Put effort into
your writing and you'll build products that people
love to use.

Page 331

Chapter 89: Write Like a Human Being

Learning points
zz Write from a user-centric not an organization-

centric point of view
zz Don't let "corporate speak" creep into your

product
zz Consider how the words you use can affect

people's perceptions of your product

#90
CHOOSE ACTIVE
VERBS OVER PASSIVE

Page 334

Chapter 90: Choose Active Verbs over Passive

Most of this book is concerned with using visual
design to improve the user's experience. However,
the words that we use as designers also have a huge
impact on the usability of the products we create.

10 years ago, I found myself on a half-day course
by the Plain English Campaign (the body behind the
"Crystal Mark" for documents that are easy to read
and understand). There were a lot of great tips on
the course, but the section on the active and passive
voice really stuck with me:

"A verb is in the passive voice when
the subject of the sentence is acted
on by the verb. For example, in 'the
ball was thrown by the pitcher', the
ball (the subject) receives the action
of the verb, and 'was thrown' is in
the passive voice. The same sentence
cast in the active voice would be,
'The pitcher threw the ball.'" –
Dictionary.com (Definition of the
active (https://www.dictionary.com/
browse/active-voice) and passive
(http://www.dictionary.com/browse/
passive-voice) voice)

https://www.dictionary.com/browse/active-voice
http://www.dictionary.com/browse/passive-voice

Page 335

Chapter 90: Choose Active Verbs over Passive

Now, because the active voice is more direct,
it requires fewer mental steps for the user to "unpack"
the meaning. In UX, this translates into interfaces that
can be used and understood faster.

Switching your copy to the active voice can make
it sound less stuffy and bureaucratic—and users will
appreciate this simplicity. Consider the following
sentences:

zz This matter will be considered by us shortly
(passive verb)

zz We will consider this matter shortly (active verb)

The active voice is crisper and uses fewer words.
When applied to the field of software design, we
can make on screen copy much easier to read. The
following are some examples:

zz In order to apply updates, your computer must be
restarted" is passive. Compare that to the clearer
and more punchy "please restart your computer
to apply updates.

zz The "search" button should be clicked once you
have entered search terms" could be replaced
with the much simpler "enter search terms and
click "search".

It's possibly because most software is designed
within large, bureaucratic organizations that this
language creeps in over time. The passive voice is often
associated with sounding more officious or formal,
when in reality it just sounds pompous and confusing.

Page 336

Chapter 90: Choose Active Verbs over Passive

As products evolve, more and more stakeholders
inevitably weigh in to have their say: branding want
the copy to reflect the brand values, legal want it
to be factually accurate and watertight, the growth
hackers want to stuff keywords in, and so on. What
users are then presented with is a watered-down,
passive version of the original idea, which is overly
complex and indirect.

The passive voice makes your interfaces slower
to use and harder to understand, so root it out and
destroy it.

Learning points
zz Choose the active voice over the passive voice

for in-app copy
zz Continually review your copy and labels to ensure

they still make sense
zz Test phrases on real users and work out which

get the best results

#91
SEARCH RESULTS
PAGES SHOULD
SHOW THE MOST
RELEVANT RESULT AT
THE TOP OF THE PAGE

Page 338

Chapter 91: Search Results Pages Should Show the Most Relevant Result at the Top of the Page

Of all the principles in this guide, this might be the
number one no-brainer. Of course, show the user the
most relevant results first. Yet, time and again, this
principle is broken and users are shown irrelevant
items first in their results.

So, why have you asked the user to search, then
shown them a poor set of results?

Reason 1: your search algorithm sucks.

Technically, this is the toughest one to solve.
Ranking search results is, in some cases, a tricky
technical problem, but there are tried and tested
technologies (TF-IDF is a very popular algorithm
for ranking text documents: see term frequency-

inverse document frequency (https://
en.wikipedia.org/wiki/Tf%E2%80%93idf)) and a lot
of off-the-shelf search tools will include some
sensible defaults.

It's a difficult task to make your search perform
as well as Google's search does—but that's what users
expect. Users don't understand that 1,000 person-years
of effort has gone into Google's ranking algorithm:
they expect your site to rank results just as effectively
(see #82, Categorize Search Results into Sections).

Test searches, pore over your site analytics, see
what the most popular search terms are and make
damn sure that those results are relevant.

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Page 339

Chapter 91: Search Results Pages Should Show the Most Relevant Result at the Top of the Page

Reason 2: your filter defaults are bad.

Maybe your results are coming back from the
database in a decent ranking, but you're applying
some poorly-chosen filters to them. For example, if
a user is searching an auction site for items, only to
be shown the closest first. It might have seemed like
a good idea—because you have the user's location—
but if they're getting the item shipped, then it's not
relevant and there may be a better, cheaper item
further down the list. Pick sensible defaults and show
the user which ones you've picked, allowing them to
change them at will (see #92, Pick Good Defaults).

Reason 3: you're trying to sell the user something
that they don't want.

A more sinister reason is that many sites will
show you the items they want you to see, rather than the
items that you want to see. This serves nothing but
the internal needs of the organization. It's a surefire
way to enrage users, so don't do it. You might sell
a few more car rentals, but at the expense of pissing
off most of your customers.

Page 340

Chapter 91: Search Results Pages Should Show the Most Relevant Result at the Top of the Page

Learning points
zz Show users the most relevant results at the top

of a search results page
zz Give users clear controls to modify the results

with sort order and filters
zz Think like your users—what results would it be

best for your users to see first?

#92
PICK GOOD DEFAULTS

Page 342

Chapter 92: Pick Good Defaults

The power of default settings is often overlooked, but
they have huge potential to affect the UX of your
product.

Some examples of great defaults:

zz When I get into my car, the default sound output
of my phone switches from handset to in-car
speaker. I can change it, but the default is sensible.

zz Sign in to an analytics product and the selected
date range is "this week", with a comparison date
range of "last week." Imagine if the default was
"today" and showed no data—useless, right?

zz When I tap a name in my "recent calls" view,
my phone calls that person, rather than starting
a new text message or video call. Those options
are tucked away in a context menu.
Picking a good default is a balance of factors:

zz How many users you think (or know through
research) want this default setting

zz How difficult it is for the user to change to an
alternative

zz How discoverable that alternative setting is
As a UX professional, it's your job to weigh up

these factors and a lot of that judgement will be
based on "gut feeling", as well as evidence.

Page 343

Chapter 92: Pick Good Defaults

There's a temptation to expose a new feature
or functionality—just because it's new—and make
it the default setting. Don't do this. Your users don't
care about something because it's new: they care
whether it's useful or not.

How many times have you heard users complain,
"They've updated the app and now it makes you do
X"? If X was an option, rather than the new default,
you'd have happier users.

A final thought—be aware that the vast majority
of users don't venture into settings menus and will
simply use a product with its default setup. For the
bulk of your users, the default setting is the only
setting, so choose well.

Learning points
zz Think carefully about the default settings you

choose
zz Most users will never change from the defaults
zz Balance the factors of discoverability and

frequency of use when deciding on defaults

#93
DON'T CONFOUND
USERS' EXPECTATIONS

Page 346

Chapter 93: Don't Confound Users' Expectations

This is a kind of meta-principle. When your customers
approach your product, they bring with them a lot
of baggage. This past experience can be fought
against or worked with. It's your job to work with it.

Consider that your users have almost certainly:

zz Used a computer or a smartphone before
zz Used a web-based product or an app before
zz Used a product a bit like yours before
zz Used a product "very much" like yours before

So why make things hard for them?

Your users have spent many years using products
just like yours, so should your product work just like
those other products or radically differently?

The answer is—"just like those other products".

iOS, Android and Tizen. There's a reason that products look similar

Page 347

Chapter 93: Don't Confound Users' Expectations

It's not exciting or sexy—you're not inventing
a whole new class of product or interface, and you're
not revolutionizing a whole product sector. What you
are doing is the good work of a UX professional:
building on the established practices that users know
and love from years of experience.

Your satisfaction comes not from reinventing the
wheel but from giving the user a wheel that they
already know how to use. This will give them the
tools to get their jobs done and improve their life
just a little bit.

Learning points
zz Users bring their past experience of other

products with them to your product
zz Make your product work like other products your

users have experienced
zz Don't reinvent the wheel

#94
REDUCE THE NUMBER
OF TASKS A USER
HAS TO COMPLETE
BY USING SENSIBLE
DEFAULTS

Page 350

Chapter 94: Reduce the Number of Tasks a User Has to Complete by Using Sensible Defaults

A big benefit of thinking through your default
settings (see #92, Pick Good Defaults) is that a good
set of defaults can radically reduce the number of
tasks that a user has to perform.

Consider a shopping site where the user searches
for "pyjamas for kids." The search results shown to
the user have already selected a series of defaults in
the left-hand filter panel:

zz Category: children's clothing
zz Age: 2 to 15
zz In stock

Without these intelligent defaults, the user would
have to search for the relevant controls and configure
them. It would only be a few extra clicks, but these
tasks take time.

Through the use of user testing, A/B testing and
analytics research, it should be possible to identify
common user journeys and optimize the defaults for
the vast majority of users.

These kinds of studies often yield results that
follow the "80/20 rule" or Pareto principle (read more
about the Pareto principle on Wikipedia (https://
en.wikipedia.org/wiki/Pareto_principle)): optimizing
the top 20% of user journeys can have a positive
impact on 80% of your users.

https://en.wikipedia.org/wiki/Pareto_principle

Page 351

Chapter 94: Reduce the Number of Tasks a User Has to Complete by Using Sensible Defaults

Learning points
zz Using sensible defaults can reduce the effort users

have to put in
zz Combine insights from user testing, A/B testing,

and analytics research
zz Usually, a little effort in a few product areas goes

a long way towards improving your product's
default settings

#95
BUILD UPON
ESTABLISHED
METAPHORS –
IT'S NOT STEALING

Page 354

Chapter 95: Build Upon Established Metaphors – It's Not Stealing

Over the years, I've found that part of the imagined
"code of practice" of designers is to not steal.
As we train and learn, we're taught to develop our
own design style and not to borrow too much.
Imitation is discouraged and copying the designs
of others is frowned upon, dishonest even.

In UX, this is the polar opposite of best practice.
Consider Jakob's Law of Internet User

Experience (https://www.nngroup.com/videos/
jakobs-law-internet-ux/), which states, "Users spend
most of their time on other sites. This means that
users prefer your site to work the same way as all the
other sites they already know".

Jakob Nielsen utterly nails it with this one. Your
users spend the vast majority of their lives not using
your product. They spend that time on other sites, other
web apps and other mobile apps. The product with
which they're least familiar is your product.

You should aim to build upon established patterns:

zz Forms that allow simple data entry, easy movement
between fields, and a "submit" or "save" button

zz Toggle controls that adjust a setting to be either
on or off

zz Pages or views in your product that tell users
how much the product costs, in total, without
hidden fees

https://www.nngroup.com/videos/jakobs-law-internet-ux/
https://www.nngroup.com/videos/jakobs-law-internet-ux/

Page 355

Chapter 95: Build Upon Established Metaphors – It's Not Stealing

zz Obvious controls, links that look like links and
buttons that resemble buttons

zz Search that works quickly and shows the most
relevant items first

Much of this book, although based on practice
and real-world experience, focuses on collecting and
distilling the best practices of what's already out there.
Make your product like all the other products your
customer already knows how to use.

Learning points
zz Don't be shy about borrowing best practices from

other products
zz Users want your product to work like products

they already know and use
zz Build upon established patterns to achieve this

#96
DECIDE WHETHER
AN INTERACTION
SHOULD BE OBVIOUS,
EASY, OR POSSIBLE

Page 358

Chapter 96: Decide Whether an Interaction Should Be Obvious, Easy, or Possible

While we strive to make our products as intuitive
and familiar as possible, there will always be
"advanced" options and rarely-used features
(see #26, Hide "Advanced" Settings From Most
Users). Giving users choice and control over their
experience will naturally lead to features that are used
less frequently or settings that only a small percentage
of users will change.

To help decide where (and how prominently)
a control or interaction should be placed, it's useful
to classify interactions into one of three types:

zz Obvious: Obvious interactions are the core
function of the app, for example, the shutter
button on a camera app or the new event button
on a calendar app. They're the functions that
users will likely perform every time they use your
product and their controls should be visible and
intuitive. Hiding these away—either accidentally
or intentionally—does still happen and it's often
a cause of massive frustration for users and the
failure of new products.

zz Easy: Easy interactions are the hardest to classify
and often we'll only get these right after several
rounds of iteration and user feedback. For example,
an easy interaction could be switching between the
front-facing and rear-facing lens in a camera app,
or editing an existing event in a calendar app. The
controls should be easily found, perhaps in a menu
or as a secondary-level item in the main controls.
They're the toughest to get right because they're
used too frequently to be tucked away, but they
are not used every time, which means designers
will often de-prioritize them too heavily.

Page 359

Chapter 96: Decide Whether an Interaction Should Be Obvious, Easy, or Possible

zz Possible: Interactions we classify as possible are
rarely used and they are often advanced features.
They need to be discoverable, but they shouldn't
be given the same prominence as obvious or easy
interactions. For example, it is possible to adjust
the white balance or auto-focus on a camera app,
or make an event recurring on a calendar app.
These advanced controls can be tucked further
away, as the majority of users will not need to
see their UI cluttered with them.

The iOS camera UI balances these three classes of interaction well

Page 360

Chapter 96: Decide Whether an Interaction Should Be Obvious, Easy, or Possible

These decisions are vital to the success of your
UI and therefore the UX and product as a whole.
Start early—at the paper prototyping or wireframe
stage. Test often—looking at what users are doing
and how they are discovering features and settings.
Iterate quickly—make changes and get them shipped
and tested as fast as you can. Only then will you
get the balance between obvious, easy and possible
correct for your product and your users.

Learning points
zz Decide whether interactions should be obvious,

easy, or possible
zz Test your assumptions with real users
zz Iterate quickly in the early stages of your products

to ensure success

#97
"DOES IT WORK
ON MOBILE?"
IS OBSOLETE

Page 362

Chapter 97: "Does it Work on Mobile?" is Obsolete

It feels like the terms "mobile-first", "Mobile-friendly"
and "responsive design" have stopped being worth
mentioning—they are a given. Everything is now
assumed to be responsive and mobile-first, and it's
considered a breaking bug if your web app doesn't
work on mobile, not to mention it being a death
sentence for your SEO.

Modern frontend frameworks make it simple
to build a web app or site that responds to different
viewports, makes controls the right size for mobile
and "gracefully degrades" (hiding elements that don't
work on smaller devices). Responsive design means
that the UI will adapt to different device sizes
automatically, so you don't have to build a distinct
"mobile version" of your product.

What's more, web apps are often better for the
user than native mobile apps. This isn't a strict rule,
as there are lots of reasons why you might need
a native app—access to device features or heavy-duty
computation or logic—but always consider whether
a web app might be a better choice. Web apps need
no installation, don't have to be submitted to an app
store, work across any platform with a web browser,
and can be updated instantly without a download.

Also consider that a mobile-first approach helps
you to reduce and simplify the experience in the
design phase. I've watched users, in user testing,
opt to use the mobile version of the site because
it's cleaner and simpler.

Page 363

Chapter 97: "Does it Work on Mobile?" is Obsolete

Learning points
zz Your software has to work on mobile—it's no

longer optional
zz Modern front end frameworks make this easy to

achieve
zz Starting from a mobile-first position can help the

overall design process

#98
MESSAGING IS A
SOLVED PROBLEM

Page 366

Chapter 98: Messaging is a Solved Problem

Messaging has been done so many times and has
been perfected to the point that the patterns are
well-established. Yet, we still see products that have
decided to reinvent the wheel or implement their
own weird take on the messaging feature, causing
confusion and user frustration aplenty.

Here's how it should work:

zz The messaging feature should show the number
of unread messages

zz Using the messaging feature should show an
"inbox", which contains a list of messages
grouped by recipient and sorted by date last
contacted

zz The inbox list should, if possible, show an extract
from the last message sent in that thread

zz Viewing an item (a recipient) should show a list
of all messages sent and received, with the latest
messages first

zz Viewing an item should "clear" the unread
notification and reduce the total number
of unread items

zz There should be a text area or text input field
with the message thread that sends a reply to that
recipient

zz The message area should support new lines,
so hitting "return" doesn't send a half-finished
message

Page 367

Chapter 98: Messaging is a Solved Problem

These tips are simple, but effective and well-
practiced. Please don't confuse your users with your
radical, innovative take on what should be a very
simple and established pattern.

Learning points
zz Don't reinvent the wheel on messaging features
zz Borrow from the well-established patterns already

in widespread use
zz Don't send the message with "return" before it's

fini—

#99
BRANDS ARE BULLSHIT

Page 370

Chapter 99: Brands Are Bullshit

I don't mean brand in the sense of visual
identity—a good logo, wordmark or tagline is a great
idea. I mean brand in the modern sense—a woolly
definition that's come to be commonplace over the
past 10 years or so.

The word brand has come to allude to the
company or to stand for the entire personality of
a corporation or product . It is  seen as the "feeling" of
interacting with products and services, and inevitably
the core interactions of those products.

The problem with this approach, developed for
over a decade by multinational branding corporations,
is that we already have a discipline for this: UX. By
crafting a product to adhere to a brand (in the
modern sense of the word), we defer control of the
UX to the marketing and branding teams, not the
UX professionals.

I'm not talking about the megabrands with
a billion customers; Apple, Google, Coca-Cola,
Microsoft, Nike, and so on are so big and their
brands so powerful that it does and should make
a difference to how their products are designed.

What about your brand, with a few thousand
or tens of thousands of customers, or your small
company, product, or newly-launched start-up? Nobody
cares. Harsh, but true. None of your users care about
your brand. They care about what your product or
service lets them do. They care about how your product
improves their lives and enhances their productivity,
and so on.

Page 371

Chapter 99: Brands Are Bullshit

The experience of your product is your brand  and
it shouldn't be designed by a marketing team, but by
UX people. This is also your competitive advantage
against the big, lumbering dinosaurs that have to
adhere rigidly to brand guides.

Don't let the brand guide ruin your product with:

zz Unreadable brand typefaces: Just use the native
system font stack

zz Branded splash screens: Just show me the damn
app

zz Build-your-own nightmarish UI controls: Oh,
the things I've seen…

zz Awful, unreadable contrast ratios :  Don't stick
to the brand palette if it doesn't work in your
product

zz Unnecessarily quirky copy: The "wacky" humor
on the side of a smoothie bottle
A brand can help to enforce consistency, but, if

you're a decent designer, you shouldn't need a brand
guide to tell you how to build consistent UI. Brands
are bullshit, so focus on the UX and the experience
becomes the brand.

Page 372

Chapter 99: Brands Are Bullshit

Learning points
zz Nobody cares about your brand, only about what

your product lets them do
zz A good UX is better than a good brand
zz Fight for the user, not the brand guide

#100
DON'T JOIN
THE DARK SIDE

Page 374

Chapter 100: Don't Join the Dark Side

People check their smartphones a lot. One reason for
this is that, in some way, it's a gamble. You check
your phone and maybe there are no notifications
or maybe there's a "red blob." Maybe someone's
"liked" your Facebook post or someone's "faved"
your Instagram picture of your brunch or your pet.

Each time you get a notification, you feel happy—
your brain releases a little bit of dopamine. So,
you wait a little while and you check your phone
again, hoping for the same result and reinforcing the
addictive behavior loop.

This isn't an accident. Many modern products,
especially social media, are designed to be addictive. In
Hooked—A Guide to Building Habit-Forming

Products, Portfolio Penguin, 2014 (https://
amzn.to/2pItKo0), psychologist Nir Eyal proposes
the Hook Model: "A four-step process that, when
embedded into products, subtly encourages customer
behavior.

https://amzn.to/2pItKo0
https://amzn.to/2pItKo0

Page 375

Chapter 100: Don't Join the Dark Side

Through consecutive 'hook cycles,' these products
bring people back again and again without depending
on costly advertising or aggressive messaging."

In order to not send your contacts to Facebook, you need to tap "Learn More."

Next, there's so-called "dark patterns", which are
UI or UX patterns designed to trick the user into
doing what the corporation or brand wants them
to do. These are, in a way, exactly the same as the
scams used by old-time fraudsters and rogue traders,
now transplanted to the web and updated for the
post-internet age. You'll definitely have come across
some of these:

Page 376

Chapter 100: Don't Join the Dark Side

zz Shopping carts that add extra "add-on" items
(like insurance, protection policies, and so on) to
your cart before you check out, hoping that you
won't remove them

zz Search results that begin their list by showing the
item they'd like to sell you instead of the best result

zz Ads that don't look like ads, so you accidentally
tap them

zz Changing a user's settings—edit your private
profile and if you don't explicitly make it private
again, the company will switch it back to public

zz Unsubscribe "confirmation screens", where you
have to uncheck a ton of checkboxes just right to
actually unsubscribe

zz Software in an automobile engine management
computer that checks whether the vehicle is
being emissions tested and, if so, lowers the
performance and emissions

I could go on—there are hundreds. Please don't
do any of them.

This mobile banner ad has a "speck of dirt" on the image, in the hope
that the user will accidentally tap when they try to remove it

Page 377

Chapter 100: Don't Join the Dark Side

In some fields, medicine for example, professionals
have a code of conduct and ethics that forms the
core of the work they do. Building software does not
have such a code of conduct, but maybe it should do.

All of these dark patterns and addictive products
were designed by normal people working in normal
software companies—they had a choice. They chose
to fight for the company, not the user. Be a good
UX professional and don't join the dark side.

Learning points
zz Think about the moral and ethical implications

of the software you help to create
zz Design interfaces and experiences that you'd want

to use
zz Fight for the user, not the company

#101
TEST WITH REAL USERS

Page 380

Chapter 101: Test with Real Users

This principle is presented last in the list deliberately,
to emphasize its importance. Nothing in this book
means anything unless you test with real people.

You need to test with real users, not your
colleagues, not your boss and not your partner. You
need to test with a diverse mix of people, from the
widest section of society you can get access to.

User testing is an essential step to understanding
not just your product, but the users you're testing—
what their goals really are, how they want to achieve
them, and where your product delivers or falls short.
You'll not only understand your users better, but
you'll reduce development time by short-circuiting
the feedback loop and getting problems fixed much
earlier in the product life cycle.

It's never too early to start testing—an unfinished
prototype or even paper prototype (cards or post-it
notes that you move around on a desk) can yield
valuable insights—so get your product in front
of users as soon as you can.

So, what are you testing? User tests are, in
themselves, a broad spectrum of activities ranging
from "guerilla-style" tests—where you approach
a random person and ask them to perform a task
in the app—through to specific feature-based tests,
where an expert user (usually with domain knowledge)
is asked to perform a complex task. Either way, you
need to start with an idea of what you're testing,
tuned to both the complexity level of the product and
the domain knowledge that a user needs to operate it.

Page 381

Chapter 101: Test with Real Users

There's a myth that user testing is expensive and
time-consuming, but the reality is that even very
small test groups (less than 10 people) can provide
fascinating insights. The nature of such tests is very
qualitative and doesn't lend itself well to quantitative
analysis, so you can learn a lot from working with
a small sample set of fewer than 10 users.

There's research (Why you only need to test with
5 users, NNG (https://www.nngroup.com/articles/why-
you-only-need-to-test-with-5-users/)) to show that
testing with as few as five users will uncover 85% of
usability problems in a single test. This startlingly high
number is found thanks to the Poisson distribution
and some math.

Too often, products aren't tested, the thinking
being that "we'll just hear what users don't like and
fix it." The problem is your users won't tell you; they'll
just leave. The near-infinite choice of products and
services on the web, app stores and a myriad of
devices means that the user has no incentive to stay,
complain, and help you to improve your product—it
will simply fail.

Test with real users and listen to them, and you'll
build something they love.

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Page 382

Chapter 101: Test with Real Users

Learning points
zz Test your product early and with real users
zz Test with a mix of ages and genders
zz You only need to test with a small group to get

huge benefits

BONUS – STRIVE
FOR SIMPLICITY

Page 384

Bonus – Strive for Simplicity

"A designer knows he has achieved
perfection not when there is nothing
left to add, but when there is nothing
left to take away."

 – Antoine de Saint-Exupéry

Strive for simplicity and clarity in every aspect of
your work. Not just in the interfaces, copy and
experiences you design, but in the words you say
in meetings and in the emails you write.

Avoid jargon, put people at ease and try
to improve the UX of everyone you interact with.

Your mock-ups and wireframes should be simple
and usable, but so should all other aspects of you –
the product.

Make yourself a delight for others to interact with.

OTHER BOOKS
YOU MAY ENJOY

Page 386

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other
books by Packt:

Hands-On UX Design for Developers

Elvis Canziba

ISBN: 978-1-78862-669-9

zz What UX is and what a UX designer does

zz Explore the UX Process and science of making
products user-friendly

zz Create user interfaces and learn which tools to use

zz Understand how your design works in the real world

zz Create UI interaction, animation, wireframes, and
prototypes

zz Design a product with users in mind

zz Develop a personal portfolio and be well-prepared to
join the UX world

https://www.packtpub.com/web-development/hands-uxui-design-developers

Page 387

Other Books You May Enjoy

Fixing Bad UX Designs

Lisandra Maioli

ISBN: 978-1-78712-055-6

zz Learn about ROI and metrics in UX

zz Understand the importance of getting stakeholders
involved

zz Learn through real cases how to fix bad UX

zz Identify and fix UX issues using different methodologies

zz Learn how to turn insights and finding into practical
UX solutions

zz Learn to validate, test and measure the UX solutions
implemented

zz Learn about UX refactoring

https://www.packtpub.com/application-development/fixing-bad-ux-designs

Page 388

Other Books You May Enjoy

User Experience Mapping

Peter W. Szabo

ISBN: 978-1-78712-350-2

zz Create and understand all common user experience
map types.

zz Use lab or remote user research to create maps and
understand users better.

zz Design behavioral change and represent it visually.

zz Create 4D user experience maps, the “ultimate UX
deliverable”.

zz Capture many levels of interaction in a holistic view.

zz Use experience mapping in an agile team, and learn
how maps help in communicating within the team and
with stakeholders.

zz Become more user focused and help your organization
become user-centric.

https://www.packtpub.com/application-development/user-experience-mapping

Page 389

Other Books You May Enjoy

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a
review on the site that you bought it from. If you purchased the
book from Amazon, please leave us an honest review on this book’s
Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our
authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time,
but is valuable to other potential customers, our authors, and Packt.
Thank you!

INDEX

Page 392

A
active voice

selecting, over passive
voice 334-336

advanced settings
hiding 92-94

animated progress bar 212
animated spinner 208
arbitrary controls 32

B
blank slate 68, 70
body copy 16
breadcrumb navigation

using 272, 273
buttons

about 22-24
clickable 30
creating 26, 27

C
card details

collecting 190, 191
case-insensitive 156
color indicators

creating 240, 241
contrast ratio 218
create from existing flow

adding 300
create from existing option

adding 301
CRUD (Stands for create, read,

update, and delete)
currency input 198

D
data entry

validating 166, 167
date picker

using 148, 149

default settings
about 342, 343
using 350, 351

descriptive links
using 232, 233

design patterns, hamburger menu
navigation on the bottom of the

view 81
tabbed navigation 81
vertical type 81

device-native input
controls 122, 123

drop-downs 48, 186-187

E
eCommerce pattern

about 284, 285
basket 285
checkout 285
products 284

edges of items
displaying 54, 55

ellipsis
using 18, 19

email addresses
validation, avoiding on client

side 134, 135
Emoji

using 118, 119
established patterns

building 354, 355

F
Favicon

creating 296, 297
feed

refreshing 76
field labels

writing 252, 253
file system 312, 313
Flash of unstyled content (FOUC)

about 8
reference link 8

Page 393

H
hamburger menu 80, 81

I
icons

avoiding 106, 107
text label, displaying 114, 115

icon style 100
image

capturing 200, 201
infinite scroll

used, for news-feed-style content
58, 59

interactions
easy, obvious, possible 358, 359

L
Let’s Encrypt
links 84, 85

M
menu items

implementing 96, 97
messaging

features 366, 367
mobile

front-end framework 362, 363
multi-line input field 140, 141

N
notifications

turning off, by users 256, 257
numeric indicator

on progress bar 214, 215
numeric input controls

used, for setting numeric values 44

O
obsolete technologies 103
onboarding wizard

dismissable 72, 73

P
pagination

using 62, 63
Pareto principle

reference link 350
passive voice 335
password manager app 130, 131
postcode

entering 194, 195
progress bar

using 204

R
read text 316, 317

S
search results

splitting, into relevant
categories 308, 309

search results page 338, 339
server-side validation 170, 171
show password toggle 126, 127
skip to content 236, 237
slider

using 40, 41
software product

features 160-162
split menu items

implementing 88, 90
symbols

avoiding ambiguous 228
system font stack

using 9

Page 394

T
tab key

adding, to navigate 248
terminology

consistency 320
test application

using 291
text

avoiding, in icons 110, 111
text field

with button labeled search 36, 37
text label

displaying, with icons 114, 115
Tweetie 32
typefaces 6
type size

using 13, 14

U
UI control

about 144, 145, 178, 179, 280, 281
autosaving 288
data, entering 174, 175
designing 260, 261
forgotten password, using 326, 327
orders, creating 304-306
payment form, using 304-306
sign in, using 322
sign out, using 322
sign up, using instead register 324
undo destructive actions 50, 51

user controls
about 268, 269
skip button, adding to 276, 277

user-entered data 138
user interface (UI)

about 23, 264, 266 370, 371
designing 374-377
phone number, detecting 183, 184

username
pre-filling, on forgot password

field 152, 153
user’s position 66
user testing 380, 381
UX professional 2, 3

V
Vanity Splash Screen

avoiding 294
visual affordances

used, on controls 222-224

W
Web Content Accessibility

Guidelines (WCAG) 218
Wide Web Consortium (W3C) 218

	Cover
	Copyright
	Packt upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1 - Anyone Can Be a User Experience (UX) Professional
	Chapter 2 - Don't Use More Than Two Typefaces
	Chapter 3 - Users Already Have Fonts on Their Computers, So Use Them
	Chapter 4 - Use Type Size to Depict Information Hierarchy
	Chapter 5 - Use a Sensible Default Size for Body Copy
	Chapter 6 - Use an Ellipsis to Indicate That There's a Further Step
	Chapter 7 - Make Your Buttons Look Like Buttons
	Chapter 8 - Make Buttons a Sensible Size and Group Them Together by Function
	Chapter 9 - Make the Whole Button Clickable, Not Just the Text
	Chapter 10 - Don't Invent New, Arbitrary Controls
	Chapter 11 - Search Should be a Text Field with a Button Labeled "Search"
	Chapter 12 - Sliders Should Be Used Only for Non-Quantifiable Values
	Chapter 13 - Use Numeric Entry Fields for Precise Integers
	Chapter 14 - Don't Use a
Drop-Down Menu
If You Only Have
a Few Options
	Chapter 15 - Allow Users to Undo Destructive Actions
	Chapter 16 - Think About What's Just off the Screen
	Chapter 17 - Use "Infinite Scroll" for Feed–Style Content Only
	Chapter 18 - If Your Content Has a Beginning, Middle, and End, Use Pagination
	Chapter 19 - If You Must Use Infinite Scroll, Store the User's Position and Return to It
	Chapter 20 - Make "Blank Slates" More Than Just Empty Views
	Chapter 21 - Make "Getting Started" Tips Easily Dismissable
	Chapter 22 - When a User Refreshes a Feed, Move Them to the Last Unread Item
	Chapter 23 - Don't Hide Items Away in a "Hamburger" Menu
	Chapter 24 - Make Your Links Look Like Links
	Chapter 25 - Split Menu Items Down into Subsections, so Users Don't Have to Remember Large Lists
	Chapter 26 - Hide "Advanced" Settings From Most Users
	Chapter 27 - Repeat Menu Items in the Footer or Lower Down in the View
	Chapter 28 - Use Consistent Icons Across the Product
	Chapter 29 - Don't Use Obsolete Icons
	Chapter 30 - Don't Try to Depict a New Idea With an Existing Icon
	Chapter 31 - Never Use Text on Icons
	Chapter 32 - Always Give
Icons a Text Label
	Chapter 33 - Emoji are the Most Recognized Icon Set on Earth
	Chapter 34 - Use Device-Native Input Features Where Possible
	Chapter 35 - Obfuscate Passwords in Fields, but Provide a "Show Password" Toggle
	Chapter 36 - Always Allow the User to Paste into Password Fields
	Chapter 37 - Don't Attempt to Validate Email Addresses
	Chapter 38 - Don't Ever Clear User-Entered Data Unless Specifically Asked To
	Chapter 39 - Pick a Sensible Size for Multiline Input Fields
	Chapter 40 - Don't Ever Make Your UI Move While a User is Trying to Use It
	Chapter 41 - Use the Same Date Picker Controls Consistently
	Chapter 42 - Pre-fill the Username in "Forgot Password" Fields
	Chapter 43 - Be Case-Insensitive
	Chapter 44 - If a Good Form Experience Can Be Delivered, Your Users will Love Your Product
	Chapter 45 - Validate Data Entry as Soon as Possible
	Chapter 46 - If the Form Fails Validation, Show the User Which Field Needs Their Attention
	Chapter 47 - Be Forgiving – Users Don't Know (and Don't Care) How You Need the Data
	Chapter 48 - Pick the Right Control for the Job
	Chapter 49 - Allow Users to Enter Phone Numbers However They Wish
	Chapter 50 - Use Drop Downs Sensibly for Date Entry
	Chapter 51 - Capture the Bare Minimum When Requesting Payment Card Details
	Chapter 52 - Make it Easy for Users to Enter Postal or ZIP Codes
	Chapter 53 - Don't Add Decimal Places to Currency Input
	Chapter 54 - Make it Painless for the User to Add Images
	Chapter 55 - Use a "Linear" Progress Bar if a Task will Take a Determinate Amount of Time
	Chapter 56 - Show a "Spinner" if the Task Will Take an Indeterminate Amount of Time
	Chapter 57 - Never Show an Animated, Looping Progress Bar
	Chapter 58 - Show a Numeric Progress Indicator on the Progress Bar
	Chapter 59 - Contrast Ratios Are Your Friends
	Chapter 60 - If You Must Use "Flat Design" then Add Some Visual Affordances to Controls
	Chapter 61 - Avoid Ambiguous Symbols
	Chapter 62 - Make Links Make Sense Out of Context
	Chapter 63 - Add "Skip to Content" Links Above the Header and Navigation
	Chapter 64 - Don't Only Use Color to Convey Information
	Chapter 65 - If You Turn Off Device Zoom with a Meta Tag, You're Evil
	Chapter 66 - Give Navigation Elements a Logical Tab Order
	Chapter 67 - Write Clear Labels for Controls
	Chapter 68 - Let Users Turn off Specific Notifications
	Chapter 69 - Make Tappable Areas Finger-Sized
	Chapter 70 - A User's Journey Should Have a Beginning, Middle, and End
	Chapter 71 - The User Should Always Know at What Stage They Are in Any Given Journey
	Chapter 72 - Use Breadcrumb Navigation
	Chapter 73 - If the User is on an Optional Journey, Give Them a Control to "Skip This"
	Chapter 74 - Users Don't Care About Your Company
	Chapter 75 - Follow the Standard E-Commerce Pattern
	Chapter 76 - Show an Indicator in the Title Bar if the User's Work is Unsaved
	Chapter 77 - Don't Nag Your Users into Rating Your App
	Chapter 78 - Don't Use a Vanity Splash Screen
	Chapter 79 - Make Your
Favicon
Distinctive
	Chapter 80 - Add a "Create from Existing" Flow
	Chapter 81 - Make it Easy for Users to Pay You
	Chapter 82 - Categorize Search Results into Sections
	Chapter 83 - Your Users Probably Don't Understand the File System
	Chapter 84 - Show, Don't Tell
	Chapter 85 - Be Consistent with Terminology
	Chapter 86 - Use "Sign in" and "Sign out", Not "Log in" and "Log out"
	Chapter 87 - "Sign up" Makes More Sense Than "Register"
	Chapter 88 - Use "Forgot Password" or "Forgotten Your Password", Not Something Obscure
	Chapter 89 - Write Like
a Human Being
	Chapter 90 - Choose Active Verbs over Passive
	Chapter 91 - Search Results Pages Should Show the Most Relevant Result at the Top of the Page
	Chapter 92 - Pick Good Defaults
	Chapter 93 - Don't Confound Users' Expectations
	Chapter 94 - Reduce the Number of Tasks a User Has to Complete by Using Sensible Defaults
	Chapter 95 - Build Upon Established Metaphors –
It's Not Stealing
	Chapter 96 - Decide Whether an Interaction Should Be Obvious, Easy, or Possible
	Chapter 97 - "Does it Work on Mobile?" is Obsolete
	Chapter 98 - Messaging is a
Solved Problem
	Chapter 99 - Brands Are Bullshit
	Chapter 100 - Don't Join the Dark Side
	Chapter 101 - Test with Real Users
	Bonus – Strive for Simplicity
	Other Books
You May Enjoy

